# 経済分析のための Stata 入門

経済産業研究所計量分析データ室 松浦寿幸 早稲田大学大学院経済学研究科 佐々木明果 慶應義塾大学大学院経済学研究科 渡辺善次 2006/04/01 version<sup>†</sup>

<sup>†</sup> 最新版は、http://park1.wakwak.com/~mt\_tosiyuki/stata-manual.htm からダウンロード可能。

# 目 次

| 第1章 Stata のはじめの一歩             | 3  |
|-------------------------------|----|
| 1-1. Stata の起動                | 3  |
| 1-2.データの読み込み                  | 4  |
| 1-3. データを保存する                 | 5  |
| 1-4.読み込んだデータを確認しよう            | 6  |
| 1-5. 変数の加工と条件式                | 8  |
| 1-6. Do ファイルのすすめ              | 10 |
| 1-7. LOG をとる                  | 12 |
| 第1章補論                         | 15 |
| 補論1-1.データ読み込みのトラブルシューティング     | 15 |
| 補論1-2.プログラミングによる繰り返し作業        | 19 |
| 第2章 データベースの作成                 | 20 |
| 2 – 1. データの縦方向の結合(1)          | 21 |
| 2 – 2. データの横方向の結合(2)          | 22 |
| 2-3.少数のデータセットから大規模データに値を割り当てる | 24 |
| 2-4.不完全一致のデータセットの接続           | 25 |
| 第3章 記述統計による分析(表の作成)           | 27 |
| 3-1.カテゴリー区分された変数(質的データ)       | 27 |
| 3-2.連続変数の記述統計量をみる             |    |
| 3-3.階級別カテゴリー変数の作成(度数分布表の作成)   |    |
| 3-4.データのエクセルへの移行              | 41 |
| 第4章 回帰分析・離散選択モデルの推定           | 43 |
| 4 - 1. 回帰分析                   | 43 |
| 4-2. 離散選択モデル                  | 48 |
| 4 – 3.回帰分析結果の整理(outreg コマンド)  | 51 |
| 第5章 パネルデータによる分析               | 53 |
| 5-1.パネルデータとは                  | 53 |
| 5-2.パネルデータによる回帰分析             |    |
| 第5章 補論 重複データの対処法              | 60 |
| 第6章 サバイバル分析                   | 63 |
| 6-1.サバイバル分析とは                 | 63 |
| 6-2.サバイバルデータとしての認証            | 63 |
| 6-3.サバイバル分析                   | 64 |
| 索 引                           | 67 |

# 第1章 Stata のはじめの一歩

# 1-1. Stata の起動

まずは、Stataを起動してみましょう。インストール後にStataを起動すると、以下の4つのウインドウが現れます。以下、簡単にそれぞれのウインドウの役割について説明します。



図1-1

- (1) Stata Command:コマンドを入力するウインドウです。
- (2) Review:過去に実行したコマンドが順次表示されていきます。表示されているコマンドをク リックすると、Stata Command ウインドウに表示されます。
- (3) Variable: 使用できる変数の一覧が表示されます。
- (4) Stata Results:データ処理の結果が表示されます。

実際のデータ処理にあたっては、メニューから処理方法を指定したり、Stata Command ウインド ウにコマンドを直接入力したりすることで作業を進めることになります。初心者にはメニューから処 理方法を指定するほうが簡単ですが、ここでは Command ウインドウへコマンドを入力して作業を 進める方法を中心に説明します。この方法で Stata を操作することに慣れておくと、プログラムを利 用する際に移行しやすいからです。

# 1-2. データの読み込み

Stata では、拡張子が.dta となっている Stata 形式ファイルしか処理に用いることはできません。そこ で、まず、Stata 形式のファイルを用意する必要があります。しかし、通常、処理の前段階における データは EXCEL 形式やタブ区切り、カンマ区切り(CSV)などで保存されている場合がほとんどで すから、ここでは、これらのファイル形式のデータを Stata に読み込む方法を検討しましょう。 ここでは、以下のような上場企業の財務データを読み込む場合を検討します。

|       |            |         | X Z   |        |        |       |
|-------|------------|---------|-------|--------|--------|-------|
| 証券コード | 漢字略称       | 売上高     | 経常利益  | 賃金俸給   | 試験研究費  | 従業員数  |
| 6502  | Toshiba    | 3256247 | 53741 | 498829 | 168295 | 74558 |
| 6503  | Mitsubishi | 2394085 | 30059 | 459219 | 138355 | 49842 |
| 6504  | Fuji       | 582267  | 5550  | 99405  | 24711  | 14094 |
| 6505  | Toyodenki  | 37643   | -1417 | 9463   | 650    | 1344  |
| 6506  | Yasukawa   | 124863  | 123   | 27822  | 586    | 4576  |
| 6507  | Shinko     | 88047   | -895  | 20009  | 845    | 2571  |
| 6508  | Medensha   | 185874  | 3347  | 43393  | 1949   | 5130  |

表1-2

まず、下準備として、変数名を変更します。Stata は日本語に対応していませんので、変数名が 日本語の場合、文字化けしてしまいます。かならず変数名は半角英数字を用いてください。表1-2のようなデータセットであれば、1行目の日本語変数名は削除してから読み込ませてください。

※変数名に、スペースやハイフンは使えません。"R-and-D"は、"RandD"になってしまいます。どう しても使いたい場合は、アンダーバー("R and D")を用いましょう。

| code | name       | sales   | Profit | Wage   | R_and_D | Labor |
|------|------------|---------|--------|--------|---------|-------|
| 6502 | Toshiba    | 3256247 | 53741  | 498829 | 168295  | 74558 |
| 6503 | Mitsubishi | 2394085 | 30059  | 459219 | 138355  | 49842 |
| 6504 | Fuji       | 582267  | 5550   | 99405  | 24711   | 14094 |
| 6505 | Toyodenki  | 37643   | -1417  | 9463   | 650     | 1344  |
| 6506 | Yasukawa   | 124863  | 123    | 27822  | 586     | 4576  |
| 6507 | Shinko     | 88047   | -895   | 20009  | 845     | 2571  |
| 6508 | Medensha   | 185874  | 3347   | 43393  | 1949    | 5130  |

#### 1-2-1. タブ区切り・カンマ区切り(CSV)のファイルの読み込み

insheet コマンドを用います。表1-2のデータが CSV ファイル(たとえば、D ドライブの¥Data フォ ルダー内に profit-loss.csv というファイル名とします。)で保存されていると すると、以下のようなコマンドを Command ウインドウに書き込みます。

#### insheet using d:¥Data¥profit-loss.csv

なお、表頭に変数名を入力しておくと、Variable ウインドウに変数名が表示されます。入力されて いない場合、変数名は、v1、v2、v3…となります。この場合、rename コマンドで変数名を変更でき ます。rename の使い方は、

#### rename [旧変数名] [新変数名]

となります。

また、複数のファイルの読み込みを行う際は、作業用フォルダーを指定することもできます。たとえば、Dドライブの¥Dataフォルダーを作業用フォルダーとすれば、以下のコマンドは、上記の読み込 みコマンドと同じ意味になります。

# cd d:¥Data

# insheet using profit-loss.csv

また、現在指定している作業用フォルダーを確認する際は、pwd コマンドを用います。

### . pwd D:¥Data

# 1-2-2. エクセルファイルの読み込み

エクセルファイルの読み込み方法はいくつか方法があります。

(1) タブ区切り、カンマ区切り(CSV 形式)で保存しなおして、insheet コマンドで入力する。

(2) コピー&ペーストで貼り付ける

メニューの「Data」をクリックすると、「Data Editor」が開きます。あらかじめ EXCEL で入力したい データを範囲指定して「コピー」しておき、「Data Editor」が開いている状態で、メニューの「Edit」→ 「Paste」とすれば、簡単にデータを読み込ませることができます。

※「Do ファイルについて」で詳述しますが、ここでは(1)の方法をお勧めします。(1)の方法の場合、 Do ファイルとして作業をプログラム化させておくことができるので、後になって、最初に EXCEL で 作成したデータを補正したり、変数を追加する場合、データの読み込み遡って作業をやり直すこと ができるからです。

# 1-3. データを保存する

データを読み込んだら、まず、Stata 形式でデータを保存しましょう。保存の仕方には二通りあって、 メニューの「file」→「Save」or「Save as」で保存するか、Command ウインドウで、save コマンドを入力 してください。新規ファイルの作成の場合は以下のようになります。

### save D:¥Data¥profit-loss.dta

なお、既存のファイルに上書きする場合、", replace"オプションを付けます。すなわち、

### save D:\Data\Profit-loss.dta ,replace

とします。なお、一度、保存したファイルを開くには、use コマンドを用います。

use D:¥Data¥profit-loss.dta

# 1-4. 読み込んだデータを確認しよう

データを保存したら、読み込んだデータを確認しましょう。メニューに、ワークシートの形をしたア イコンが二つあるのがわかるでしょうか?右側が Data Browser です。(図1-4-1)ここをクリック すると、ワークシートが現れるので、データがきちんと入力されているか確認しましょう。なお、Data Browser ではエクセルのように直接データを加工することはできません。

| () b. b. l/c           |                                                                                                                                                                                                                                                                                                                                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 接続                     |                                                                                                                                                                                                                                                                                                                                    |
|                        | Stata/SE 80                                                                                                                                                                                                                                                                                                                        |
|                        | File Edit Prefs Data Graphics Statistics Uper Window Help                                                                                                                                                                                                                                                                          |
|                        | 🖆 🖬 🚳 🗰 🔳 🧭 💷 🔍 🗖 🖸 🗶 Data Browser                                                                                                                                                                                                                                                                                                 |
| Review X               |                                                                                                                                                                                                                                                                                                                                    |
|                        | Stata Results                                                                                                                                                                                                                                                                                                                      |
|                        | tm         Statistics/Data Analysis         Special Edition         8.0         Copyright 1984-2003         Statistics/Data Analysis         Stata Corporation         4905         Lakeway Drive         College Station, Texas 77845         800-STATA-PC         http://www.stata.com         979-696-4600         979-696-4601 |
| Variables              | 20-user Stata for Windows (network) perpetual license:                                                                                                                                                                                                                                                                             |
| Target: Command Window | Licensed to: gigyoku                                                                                                                                                                                                                                                                                                               |
| ▲                      | ?o???¥????                                                                                                                                                                                                                                                                                                                         |
|                        | Notes:<br>1. (/m# option or -set memory-) 10.00 MB allocated to data<br>2. (/v# option or -set maxuar-) 5000 maximum variables                                                                                                                                                                                                     |
|                        |                                                                                                                                                                                                                                                                                                                                    |
|                        |                                                                                                                                                                                                                                                                                                                                    |
|                        |                                                                                                                                                                                                                                                                                                                                    |
|                        | Stata Command                                                                                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                                                                                                                                                    |
|                        | C¥DATA                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                                                                                                                                                                                                                                                    |

図1-4-1

変数がたくさんある場合、Data Browser では、データは一度に表示されないので、スクロールさせる必要があります。面倒な場合は、必要な変数だけを表示させたり、ある条件を満たすデータだけを表示させたりすることもできます。具体的には、Command ウインドウに、

browse sale profit

と入力すると、sale と profit だけが表示されます。(図1-4-2) また、sale が 100,000 以下の企業だけを表示させたいときは、

### browse if sale<=100000

とします。条件式、"if"の使い方については後述します。

図1-4-2

| Review                                                                                             | × Eile            | <u>E</u> dit                                         | <u>P</u> refs                          | <u>D</u> ata <u>G</u> ra                               | phics                                                | Statistics            | <u>U</u> ser                                                            | <u>W</u> indow         | <u>H</u> elp |          |  |
|----------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------|----------------------------------------|--------------------------------------------------------|------------------------------------------------------|-----------------------|-------------------------------------------------------------------------|------------------------|--------------|----------|--|
| set memory 100m<br>use "D:\kaii\oversea\affiliate.dat/                                             | a dta'' clear 🚺 🖼 | -                                                    | 6                                      | Si 🚳                                                   | •                                                    | 3                     |                                                                         | 00                     | 3            |          |  |
| browse                                                                                             |                   |                                                      |                                        |                                                        |                                                      |                       |                                                                         |                        | _            |          |  |
| tab year<br>clear                                                                                  | 4 6               | Stata                                                | Result                                 | s                                                      |                                                      |                       |                                                                         |                        |              |          |  |
| edit<br>drop<br>drop *<br>edit<br>browse<br>browse sales profit                                    |                   | . use<br>. brow<br>. tab<br>Stata R<br><u>P</u> rese | "D:\}<br>se<br>year<br>year<br>Browser | kaiji∖ove<br>Najika                                    | ersea<br>Freg.                                       | saffili<br>. ₽<br>≪ [ | ate-da<br>ercent<br>≫                                                   | ta.dta<br><u>H</u> ide | ", cl<br>Cum | ear<br>- |  |
|                                                                                                    |                   |                                                      |                                        |                                                        |                                                      | ealeef                | 11 = 3                                                                  | 225624                 |              |          |  |
|                                                                                                    |                   |                                                      |                                        | عماده                                                  |                                                      | sales[                | 1] = 3                                                                  | 25624                  | 7            |          |  |
|                                                                                                    |                   |                                                      | 1                                      | sales<br>3256                                          | 5247                                                 | sales[<br>pro         | 1] = 3<br>fit<br>53741                                                  | 25624                  | 7            |          |  |
|                                                                                                    |                   |                                                      | 1 2                                    | sales<br>3256<br>2394                                  | 5247<br>4085                                         | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059                                         | 25624                  | 7            |          |  |
| uuu IIII Variables                                                                                 |                   |                                                      | 1<br>2<br>3                            | sales<br>3256<br>2394<br>582                           | 5247<br>4085<br>2267                                 | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550                                 | 125624                 | .7           |          |  |
| Variables                                                                                          | X                 |                                                      | 1<br>2<br>3<br>4                       | sales<br>3256<br>2394<br>582<br>37                     | 5247<br>4085<br>2267<br>7643                         | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417                        | 325624                 | .7           |          |  |
| Variables<br>Target: Command Window<br>code                                                        |                   |                                                      | 1<br>2<br>3<br>4<br>5                  | sales<br>3256<br>2394<br>582<br>37<br>124              | 5247<br>4085<br>2267<br>7643<br>4863                 | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417<br>123                 | 125624                 | .7           |          |  |
| Variables<br>Target: Command Window<br>code<br>name<br>sales                                       |                   |                                                      | 1<br>2<br>3<br>4<br>5<br>6             | sales<br>3256<br>2394<br>582<br>37<br>124<br>88        | 5247<br>4085<br>2267<br>7643<br>4863<br>3047         | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417<br>123<br>-895         | 125624                 |              |          |  |
| Variables<br>Target: Command Window<br>code<br>name<br>sales<br>profit                             |                   |                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7        | sales<br>3256<br>2394<br>582<br>33<br>124<br>88<br>185 | 5247<br>4085<br>2267<br>7643<br>4863<br>8047<br>5874 | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417<br>123<br>-895<br>3347 | 125624                 |              |          |  |
| Variables<br>Target: Command Window<br>code<br>name<br>sales<br>profit<br>wage                     |                   |                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7        | sales<br>3256<br>2394<br>582<br>37<br>124<br>88<br>185 | 5247<br>4085<br>2267<br>7643<br>4863<br>3047<br>5874 | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417<br>123<br>-895<br>3347 | \$25624                |              |          |  |
| Variables<br>Target: Command Window<br>code<br>name<br>sales<br>profit<br>wage<br>r_and_d<br>labor | R_anc             |                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7        | sales<br>3256<br>2394<br>582<br>37<br>124<br>88<br>185 | 5247<br>4085<br>2267<br>7643<br>4863<br>3047<br>5874 | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417<br>123<br>-895<br>3347 | 325624                 |              |          |  |
| Variables<br>Target: Command Window<br>code<br>name<br>sales<br>profit<br>wage<br>r_and_d<br>labor | R_anc<br>Labor    |                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>7   | sales<br>3256<br>2394<br>582<br>37<br>124<br>88<br>185 | 5247<br>4085<br>2267<br>7643<br>4863<br>3047<br>5874 | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417<br>123<br>-895<br>3347 | \$25624                |              |          |  |
| Variables<br>Target: Command Window<br>code<br>name<br>sales<br>profit<br>wage<br>r_and_d<br>labor | R_anc<br>Labor    |                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>7   | sales<br>3256<br>2394<br>582<br>37<br>124<br>88<br>185 | 5247<br>4085<br>2267<br>7643<br>4863<br>3047<br>5874 | sales[<br>pro         | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417<br>123<br>-895<br>3347 | 325624                 |              |          |  |
| Variables<br>Target: Command Window<br>code<br>name<br>sales<br>profit<br>wage<br>r_and_d<br>labor | R_anc<br>Labor    |                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>7   | sales<br>3256<br>2394<br>582<br>37<br>124<br>88<br>185 | 5247<br>4085<br>2267<br>7643<br>4863<br>3047<br>5874 | sales[                | 1] = 3<br>fit<br>53741<br>30059<br>5550<br>-1417<br>123<br>-895<br>3347 | 325624                 |              |          |  |

このほか、Results ウインドウ上で、データを確認する方法がいくつかあります。

# (1) list variable1 variable2 …: 変数(variable)の内容を表示

|    | 1       | 0      |        |
|----|---------|--------|--------|
| -  | sales   | profit | wage   |
| 1. | 3256247 | 53741  | 498829 |
| 2. | 2394085 | 30059  | 459219 |
| 3. | 582267  | 5550   | 99405  |
| 4. | 37643   | -1417  | 9463   |
| 5. | 124863  | 123    | 27822  |
| 6. | 88047   | -895   | 20009  |
| 7. | 185874  | 3347   | 43393  |

(2) describe:標本数、変数の属性を表示します。("des"と省略可)

| . des               |            |           |              |                |  |
|---------------------|------------|-----------|--------------|----------------|--|
| Contains da         | ta         |           |              |                |  |
| obs:                | 7          |           |              |                |  |
| vars:               | 7          |           |              |                |  |
| size:               | 252 (      | 99.9% of  | memory free) |                |  |
|                     | storage    | display   | value        |                |  |
| variable nam        | ne type    | format    | label        | variable label |  |
| code                | int        | %8. Og    |              |                |  |
| name                | str10      | %10s      |              |                |  |
| sales               | long       | %12. Og   |              |                |  |
| profit              | long       | %12. 0g   |              |                |  |
| wage                | long       | %12. Og   |              |                |  |
| r_and_d             | long       | %12. Og   |              | R_and_D        |  |
| labor               | long       | %12. Og   |              | Labor          |  |
| Sorted by:<br>Note: | dataset ha | s changed | since last s | aved           |  |

- ※ "storage type"は変数の形式です。"int"は、整数、"str10"は 10bite 以下の文字列、long は long 形式であることを示します。
- (3) sum variable1 variable2 …: 変数(variable)の基本統計量を表示します。

| . sum name sales | profit |           |           |       |         |
|------------------|--------|-----------|-----------|-------|---------|
| Variable         | Obs    | Mean      | Std. Dev. | Min   | Max     |
| name             | 0      |           |           |       |         |
| sales            | 7      | 952718    | 1315259   | 37643 | 3256247 |
| profit           | 7      | 12929. 71 | 21080. 1  | -1417 | 53741   |

※ "name"は、文字列ですので、基本統計量が計算されません。

# 1-5. 変数の加工と条件式

# 変数を加工する

表を作成する際に、変数を足したり引いたり、掛けたり割ったりという作業が必要となる場合が出てきます。そんなときに使えるコマンドを整理しておきましょう。

(1) generate:新たな変数を作ったり、変数を加工する場合に使用(genと省略可)

gen newvar1 = variable1 + variable2 gen newvar2 = variable1 - variable2 gen newvar3 = variable1 \* variable2 gen newvar4 = variable1 / variable2

(例)generate hosdc2=hosd1 + hosd2 generate age2 = age\*age

(2) egen:genコマンドには使えないいくつかの関数を使うことができるコマンド。

```
egen newvar = function(variable1)
```

function のところには、関数を書き込みます。利用できるものを多数ありますが、主なものは以下のとおりです。

mean:平均値 sum:合計 max:最大値 min:最小値

(例)egen avg = mean(chol)

この例では、cholの平均値を計算し、その値を avg に代入する。

※ 注意点

generate の sum()は、変数を上から順番に合計した値を順次表示していくが、 egen の sum()は、変数をすべて合計した値が常に表示される。

gen sum1 = sum(A)

egen sum2 = sum(A)

| А | Sum1 | Sum2 |
|---|------|------|
| 1 | 1    | 15   |
| 2 | 3    | 15   |
| 3 | 6    | 15   |
| 4 | 10   | 15   |
| 5 | 15   | 15   |

また、パネルデータを作成する際は、次の group 関数が便利です。たとえば、以下のように2年 分の都道府県データに対して、group 関数を使って新しい変数を作成してみましょう。

| Prefecture | Year |
|------------|------|
| Hokkaido   | 1990 |
| Hokkaido   | 1991 |
| Aomori     | 1990 |
| Aomori     | 1991 |
| Iwate      | 1990 |

egen newvar = group(year)

| newvar | prefecture | year |
|--------|------------|------|
| 1      | Hokkaido   | 1990 |
| 2      | Hokkaido   | 1991 |
| 1      | Aomori     | 1990 |
| 2      | Aomori     | 1991 |
| 1      | Iwate      | 1990 |

year で特定されるグループについて、同じ数値が割り当てられます。カッコ内には、カテゴリー 変数(上の例では、prefecture)を指定することもできます。また、カッコ内に複数の変数を並べる こともできます。

### (3) replace: すでに存在する変数の値などを書き換える時に用いる

replace oldvar = value1 if variable==2

variable が 2 の場合、oldvar の値を value1 に置き換える。

(例): 変数の値を書き換える(-8 → 5) replace odd = 5 if odd == -8

| Odd                 | Even |
|---------------------|------|
| 1                   | 2    |
| 2                   | 4    |
| ( <mark>-8</mark> ) | 6    |
| $\overline{7}$      | 8    |
| 9                   | 10   |

| 7      |  |  |
|--------|--|--|
| $\neg$ |  |  |
|        |  |  |

Odd

3

5

Even 2 4

6

 $\frac{8}{10}$ 

#### (4) 条件式の書き方

これまで度々登場していますが、ここで条件式の書き方についてまとめておきましょう。

```
等しいとき (==)
    replace newvar=1 if var1==0
等しくない (!= もしくは、~=)
    replace newvar=1 if var1!=0
    replace newvar=1 if var1~=0
大小関係 (>, <, <=, >=)
    replace newvar=1 if var2=>0
「かつ」(&)
    replace newvar=1 if var2=>0&var1==0
「または」(|)
    replace newvar=1 if var2=>0|var1==0
A かつ B、または、C かつ D
    replace newvar=1 if (var3=="A"&var4=="B")| (var3=="C"&var4=="D")
    ※変数が文字列であっても""で囲むことで、条件式に加えることができます。
```

1-6. Do ファイルのすすめ

Doファイルについてふれておきましょう。Doファイルはとは、Stataのコマンドを作業工程順に書き 並べたファイルで、いくつものコマンドをまとめて実行する際、たいへん便利です。また、作業工程 をすべて DO ファイル上で記述する習慣をつけておけば、すべての作業をもう一度初めからやり直 すことができます。人間というものは、かならずミスをする動物ですから、作業を繰り返しているう ちに、どこかでミスをしてしまうものです。そんな場合も、一連の作業を Do ファイル上で記述してお けば、元に戻ってデータセットを修正することができるわけです。

さて、Do ファイルの作成方法ですが、秀丸などのテキストエディターで、Stata のコマンドを書き込んだファイルを作成して、保存するときに拡張子を".do"とします。Stataには専用のDoファイルエディターがありますが、使い勝手はあまりよくありません。以下の例は、これまでの一連の作業をDOファイルにしたものです。

\* do file の例 insheet using c:¥Data¥profit-loss.csv des list sales labor sum sales labor

Do ファイルの中に、コメントを加える場合は、行頭に "\*" をつけておきます。また、変数の数がた くさんあって、改行したい場合は、行末に" /\*"、次の行の行頭に" \*/" を入れます。

> \* Do ファイルで改行したいとき insheet using c:¥Data¥profit-loss.csv des list sales labor wage /\* \*/ name profit

Do ファイルを実行するには、「file」→「do」で、ファイルの所在を指定します。(図1-6参照)

| Stata/SE                | 8.0<br>Prefs Data Gr | aphics Statistics User V | Vindow Help                                  |                                 |              |         |                        |            |               |
|-------------------------|----------------------|--------------------------|----------------------------------------------|---------------------------------|--------------|---------|------------------------|------------|---------------|
| Open                    | C#I+O                |                          | 0 8                                          |                                 |              |         |                        |            |               |
| Save                    | Ctrl+S               |                          |                                              |                                 |              | ×       |                        |            | 7             |
| Save <u>A</u> s<br>Do   | Shift+OtrI+S         | tn                       |                                              |                                 |              |         | E Review               | 2          |               |
| <u>F</u> ilename        |                      | 8.0 C                    | opyright 1984-2003                           |                                 |              |         |                        |            |               |
| Log                     |                      | ysis S                   | tata Corporation<br>905 Lakeway Drive        |                                 |              |         |                        |            |               |
| Import<br>Export        |                      | • C                      | ollege Station, Texas<br>00-STATA-PC htt     | 77845 USA<br>:p://www.stata.com |              |         |                        |            |               |
| Open Grap               | <u>h</u>             | 9                        | 79-696-4600 sta<br>79-696-4601 (fax)         | ata@stata.com                   |              |         |                        |            |               |
| Save Grap<br>Print Grap |                      | ows (network) per        | petual license:                              |                                 |              |         |                        |            |               |
| Print Resu              | ilts                 | 81980526263<br>Matsuura  |                                              |                                 |              |         |                        |            |               |
| E <u>x</u> it           | Alt+F4               | Kelzalsanngyou           |                                              |                                 |              |         | Variables              | X          | 1             |
| 1.                      | (/m# optio           | n or -set memory-)       | 10.00 MB allocated to 5000 maximum unviables | data                            |              |         | Target: Command Window | <i>"</i>   |               |
|                         | Wow opero            |                          |                                              |                                 |              |         |                        | -          | -             |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
| 🗖 Stata Cor             | nmand                |                          |                                              | X                               | 1            |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
| ,                       |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
|                         |                      |                          |                                              |                                 |              |         |                        |            |               |
| C¥DATA                  |                      |                          | 1                                            |                                 | 1            |         |                        | 💹 あ 連 R漢 🗱 | A 🐴 🕄 CAPS -  |
| <b>መ</b> ረፉ-ዞ           | ] 🥭 🗯 🚮 🗍            | ▶️作業手順doc - Microsoft    | 🔍 工業統計事業所コンパータ(                              | Microsoft Excel - Joonv         | Nonv.do - 秀丸 | Sta Sta | ta/SE 8.0              |            | 🕀 🔗 🚅 🛛 17:57 |

図1-6

Command ウインドウを利用する際は、

do c:¥Data¥yomikomi.do

と入力します。

1-7. LOG をとる

さて、データが正しく Stata に読み込まれたことが確認できたら、いよいよ分析ですが、その前に、 ログ(作業記録)のとり方についてみておきましょう。

Stata による作業結果は、Results ウインドウに表示されますが、結果が長くなるとすべてを見る ことができなくなります。そこで、Results ウインドウに表示された結果をファイル上に記録する必要 が出てくるわけです。

ログファイルを作成するには、メニューの LOG アイコンをクリックします。(図1-7)既存のログ

ファイルを開くことも出来ますが、その際は、結果を既存のファイルに付け足すか(Append を選択)、上書きするかを(Overwrite)を選択します。

Command ウインドウや Do ファイル上で実行したい場合は、

# log using D:¥Data¥logwotoru.log

とします。既存の logwotoru.log ファイルにこのコマンド以下の結果を付け足していき、この場合は、

# log using D:¥Data¥logwotoru.log, append

上書きする際は、"append"の代わりに"overwrite"と記入します。ここでは、拡張子を".log"としていますが、必ずしも".log"である必要はありません。どんな拡張子でもテキストファイトして保存されていますので、秀丸等で開くことが出来ます。



図1-7

第1章補論

# 補論1-1.データ読み込みのトラブルシューティング

ここでは、データ読み込みの際のトラブル対処法についていくつか解説しておきます。

(1) メモリーが足りない!

| 大容量のデータを読み込ませると、 | 以下のようなメッセージが | Results | ウインドウに表示され、デ |
|------------------|--------------|---------|--------------|
| ータが読み込めないことがあります | 0            |         |              |

| . use "D:¥Data¥daikibo-data.csv", clear                                        |  |  |  |  |  |
|--------------------------------------------------------------------------------|--|--|--|--|--|
| no room to add more observations                                               |  |  |  |  |  |
| An attempt was made to increase the number of observations beyond what is      |  |  |  |  |  |
| currently                                                                      |  |  |  |  |  |
| possible. You have the following alternatives:                                 |  |  |  |  |  |
| 1. Store your variables more efficiently; see help compress. (Think of Stata's |  |  |  |  |  |
| data area as the area of a rectangle; Stata can trade off width and length.)   |  |  |  |  |  |
| 2. Drop some variables or observations; see help drop.                         |  |  |  |  |  |
| 3. Increase the amount of memory allocated to the data area using the set      |  |  |  |  |  |
| command; see help memory.                                                      |  |  |  |  |  |
| r (901) ;                                                                      |  |  |  |  |  |

このメッセージがでるのは、Stata に割り当てられているメモリーよりもデータのほうが大きいから です。このような場合、データを読み込む前に、Stata に割り当てられるメモリー領域を確保してお く必要があります。たとえば、50m割り振りたい場合は、

### set memory 50m

とします。一度、読み込みに失敗し、エラーメッセージが出た後で、メモリーの割当量を変更したい 場合は、データセットをクリアーしてください。具体的には、Command ウインドウから以下のように入 力します。

clear

(2) browse や list でデータが確認できるのに、sum で記述統計量が出ない!

数値列に文字列が混ざっていると、データ読み込みの際に、その変数は文字列として認識されてしまいます。たとえば、下図のように、欠損値が、"N.A."と入力されている場合、その変数は文字列となります。

| value1 | value2 | value3 |
|--------|--------|--------|
| 5465   | 5647   | 5835   |
| N.A.   | 5835   | 6030   |
| 4164   | 4303   | 4446   |
| 4634   | N.A.   | 4446   |
| 4355   | 4500   | N.A.   |

このデータセットを読み込み、descript コマンドで変数の属性を調べると、読み込んだ変数の storage type が str(文字列)になっています。

. des Contains data obs∶ 5 vars: 3 52 (99.9% of memory free) size∶ storage display value label variable name type format variable label %8. Og value1 str4 value2 str4 %10s value3 str4 %12. Og Sorted by:

このとき、読み込んだ変数について、sumarize で記述統計を出力しようとすると、以下のように 結果が出てきません。

| . sum name sal | es profit |      |           |     |     |
|----------------|-----------|------|-----------|-----|-----|
| Variable       | Obs       | Mean | Std. Dev. | Min | Max |
| value1         | 0         |      |           |     |     |
| value2         | 0         |      |           |     |     |
| value3         | 0         |      |           |     |     |
|                |           |      |           |     |     |

このような場合、読み込み前のデータに戻って、"N.A."を、ピリオド"." に置換するか、空白セルにしてしまいましょう。その後、再度、読み込みを実行してみてください。

また、Stata 上で変換することも出来ます。データの置き換えコマンドある replace を用います。

replace value2="." if value2=="N.A."

このコマンドは、value2 の要素が、"N.A."になっているものは、ピリオド"." に置き換えよ、と

いう意味です。ただし、これだけの作業では、まだ変数は文字列のままです。変数の要素がすべて数値、もしくはピリオド"."になったら、

### destring value2, replace

と入力します。

この他、空白セルにゴミ(たとえば、誤って空白セルに、"^"、","など)が入っている場合も文字列 になってしまいます。このような場合、まずどこにどんなものが入っているのかを探し出すのは大 変です。そこで、当該変数で sort variable(variable 内のデータを、大きいもの、もしくはアルフ ァベット順に並び替える)して、その変数を browse してみてください。数値に異物が混入していれ ば、一番最後に並んでいるはずです。

#### (3) 数値と文字列が組み合わさった変数を分解したい

変数が数値と文字列の組み合わせになっている場合で、それを分解して利用したいケースを考えましょう。

たとえば、以下のような数値と文字が組み合わさった変数があったとします。この変数の上二 桁が業種コードで、アルファベットが法人属性(個人企業なら A、法人企業なら B)、下一桁が本店 か(1)、支店か(2)を示しているとします。

> code 58A1 58A2 58B1

1 2

3

4 59B2

基本的には、generateコマンドにオプションを付けて処理します。

# 1)アルファベットを取り出したいとき

# gen <u>str1</u> corp=<u>substr(code,3,1)</u>

新しい変数の属性 この場合、1 byteの文字列

変数 code の 3 文字目から 1 文字取り出す

2)上二桁の数値を取り出したいとき

gen <u>byte</u> industry=<u>real(substr(code,1,2))</u>

| 新しい変数の属性 | 取り出した数値を実数として認識する。      |
|----------|-------------------------|
| この場合、数値  | real <b>が無い場合、文字列扱い</b> |

結果は、以下のようになります。

|   | code | corp | industry |
|---|------|------|----------|
| 1 | 58A1 | А    | 58       |
| 2 | 58A2 | А    | 58       |
| 3 | 58B1 | В    | 58       |
| 4 | 59B2 | В    | 59       |

また、この方法を応用すれば、複数のコードを結合させた長い桁数の ID 番号を分解することもできます。

たとえば、以下のような ID 番号があったとします。

- id
- 1 01201001
- 2 01201002
- 3 01301001
- 4 01304001

ID の上二桁が都道府県番号、次の三桁が市区町村コード、最後の三桁が事業所コードとすると、 これを分解する方法を考えましょう。 まず、この変数 id を文字列として認識しなおします。

gen str10 code\_str=string(id)

上二桁を取り出し、prefecture(都道府県)とします。

gen byte prefecture=real(substr(code\_str,1,2))

同様の手順で、市区町村コード、事業所コードを取り出すことができます。

### 補論1-2. プログラミングによる繰り返し作業

同じような作業を何度も繰り返す必要があるとき、DO ファイルを使ったとしても、いちいち、コマンドを並べるのは面倒です。そんなとき、プログラミングの初歩的な知識があると効率的に作業することができます。

複数の変数に同じ処理を適用したい場合は、for を使います。たとえば、以下のデータセットのように、P.15 ページの表のような欠損値が" N.A."と表示されているデータセットがあったといます。 "N.A."を欠損値に変えるには、前述のように

replace value1="." if value1=="N.A." replace value2="." if value2=="N.A." replace value3="." if value3=="N.A."

という作業を繰り返す必要があります。この一連の作業を、繰り返しコマンドをつかって処理してみ ましょう。

for num 1/3: replace valueX="." if valueX=="N.A."

この for num コマンドを使うと、Stata は、X のところに順番に1から3の数値を代入し、コマンド処理が3回繰り返します。

また、value1, value2, value3, value4という4つの変数のそれぞれの比率を計算するときは、

gen ratio12=value1/value2 gen ratio13=value1/value3 gen ratio14=value1/value4 gen ratio23=value2/value3 gen ratio24=value2/value4 gen ratio34=value3/value4

となります。これをfor numコマンドを使うときは、以下のように¥で繰り返す数値を複数定義することもできます。

for num 1/3 ¥ num 2/4: gen ratioXY=valueX/valueY

このコマンドの弱点は、数値を順番に代入するときしか使えない点です。全く異なる名称の複数の変数に対して、繰り返し処理を行う場合は、foreachコマンドを使います。

foreach v of varlist <u>income consumption investment</u> [改行] { [改行] ① <u>replace `v'="." if `v'==""N.A."</u> [改行] } ②

下線部①のところに、処理を施したい変数を並べます。下線部②には、繰り返し処理を施したいコ マンドを書きます。このコマンドを実行すると、下線部②の`v'のところに、①の変数が順番に代入 されていきます。

# 第2章 データベースの作成

第2章では、複数のデータセットをまとめて一つのデータセットにする方法について検討します。 データの接続方法としては、A、B、C、D、E をそれぞれ異なるデータセットの入ったファイルとすると き、以下のようなパターンが考えられます。

縦に接続する場合 ⇒ (2-1)



横に接続する場合:完全一致 ⇒ (2-2)



片方のデータセットの一部が複数に対応する場合 ⇒ (2-3)



横に接続する場合:不完全一致 ⇒ (2-4)



以上の(1)~(4)を例をあげながら検討してみましょう。

# 2-1. データの縦方向の結合(1)

まず、はじめに、複数の個体ごとのデータファイルを結合する方法を考えます。例として、都道府 県ごとにファイルされたデータを一つにまとめる方法について考えましょう。

| Hokkaido.dta |      |            |  |  |  |  |
|--------------|------|------------|--|--|--|--|
| Prefecture   | Year | Production |  |  |  |  |
| 1            | 1980 | 1200       |  |  |  |  |
| 1            | 1981 | 1310       |  |  |  |  |
| 1            | 1982 | 1450       |  |  |  |  |
| (省略)         |      |            |  |  |  |  |
| 1            | 2000 | 2560       |  |  |  |  |
|              |      |            |  |  |  |  |



| Prefecture          | Year                 | Production          |
|---------------------|----------------------|---------------------|
| 2                   | 1980                 | 800                 |
| 2                   | 1981                 | 710                 |
| 2                   | 1982                 | 1050                |
| (省略)                |                      |                     |
| 2                   | 2000                 | 1420                |
| 2<br>2<br>(省略)<br>2 | 1981<br>1982<br>2000 | 710<br>1050<br>1420 |

この2つのファイルを結合させる場合、append

コマンドを用います。使用方法としては、一方のファイルを開いた状態で、もう一方のファイルを append で呼び出します。

具体的には以下のようになります。(2つのファイルは D: ¥Data にあるとします。)

cd D:¥Data use Hokkaido.dta append Aomori.dta save Production80-00.dta

完成したファイルは以下のようになります。

| Pref | fecture | Year | Production |
|------|---------|------|------------|
| 1    |         | 1980 | 1200       |
| 1    |         | 1981 | 1310       |
|      | (省略)    |      |            |
| 1    |         | 2000 | 2560       |
| 2    |         | 1980 | 800        |
| 2    |         | 1981 | 710        |
|      | (省略)    |      |            |
| 2    |         | 2000 | 1420       |

append を使う際の注意点として、必ず共通の変数には同じ変数名を付けておいてください。

# 2-2. データの横方向の結合(2)

次に、複数の個体のデータが変数ごとに各々のファイルに収録されている場合に、データを結合 させる例を考えてみましょう。例として、都道府県別の生産額のデータに都道府県別の賃金のデ ータを接続する方法を考えます。

| Wage.dta   | ı        | Produc     | Production.dta |  |  |
|------------|----------|------------|----------------|--|--|
| prefecture | wage     | prefecture | production     |  |  |
| 1          | 3.616281 | 1          | 18954421       |  |  |
| 2          | 2.643890 | 2          | 4634405        |  |  |
| 3          | 3.521620 | 3          | 4678288        |  |  |
| 4          | 3 630811 | 4          | 8429719        |  |  |
| 5          | 3 347991 | 5          | 3901386        |  |  |
| 6          | 3 517322 | 6          | 4095372        |  |  |
| 7          | 3 928278 | 7          | 7692465        |  |  |
| 8          | 5 337247 | 8          | 11374471       |  |  |
| 9          | 4 012243 | 9          | 7739373        |  |  |
| (劣政)       | 4.512245 | (省         | 略)             |  |  |
| 47         | 2.687243 | 47         | 3268545        |  |  |

まず、接続する2つのファイルをキーとなる変数で sort しておく必要があります。Wage. dta からみ てみましょう。(二つのファイルは、Dドライブの Data フォルダーにあるものとします。)

| . cd D:¥Data  | (D ドライブ  | 、Data フォ   | ルダーに移動)      |                   |
|---------------|----------|------------|--------------|-------------------|
| . des         |          |            |              |                   |
| Contains data | from D:¥ | Data¥Wage  | . dta        |                   |
| obs:          | 47       |            |              |                   |
| vars:         | 2        |            |              | 21 Apr 2004 21:58 |
| size:         | 423 (    | 99.9% of 1 | memory free) |                   |
|               |          |            |              |                   |
|               | storage  | display    | value        |                   |
| variable name | type     | format     | label        | variable label    |
| prefecture    | byte     | %8. 0g     |              |                   |
| wage          | float    | %9. 0g     |              |                   |
| Sorted by:    |          |            |              |                   |

この場合、"Sorted by"の後ろに何も示されていないので、まだ sort されていないことがわかります。そこで、

sort prefecture

と Command ウインドウに入力し、データをソートしてから、もう一度、des で確認すると、以下のよう になります。

| . des                |                        |                   |
|----------------------|------------------------|-------------------|
| Contains data from D | · ¥Data¥Waga dta       |                   |
| obs: 47              | · fDalafwage. ula      |                   |
| vars: 2              |                        | 21 Apr 2004 21:58 |
| size: 423            | (99.9% of memory free) |                   |
|                      |                        |                   |
| storage              | e display value        |                   |
| variable name type   | format label           | variable label    |
| nrefecture           | <br>hvte %8.0g         |                   |
| wago                 | $f_{1}$                |                   |
| wage                 | 110at //9.0g           |                   |
| Sorted by: profestu  | ro                     |                   |
| Sorred by: prefectu  |                        |                   |
|                      |                        |                   |

# この状態で、saveしておきます。

# save Wage.dta,replace

# 上書きすることになるので、replaceを忘れずに。

同様に、Production. dta も prefecture で sort し、save しておきます。これで準備完了です。 こつのファイルのうち、どちらを先に呼び出して構いませんが、Production. dta を先に呼び出 すことにしましょう。

# use Production.dta

データを接続するには、merge コマンドを使います。merge コマンドは、

# merge [キー変数] using [接続するファイル名]

となります。今の場合、接続のキーとなる変数は prefecture、接続するファイルは Wage. dta ですので、以下のようになります。

# merge prefecture using Wage.dta

うまくいけば、データセットは以下のようになります。

| prefecture | wage     | production | _merge |
|------------|----------|------------|--------|
| 1          | 3.616281 | 18954421   | 3      |
| 2          | 2.64389  | 4634405    | 3      |
| 3          | 3.52162  | 4678288    | 3      |
| 4          | 3.630811 | 8429719    | 3      |
| 5          | 3.347991 | 3901386    | 3      |
| 6          | 3.517322 | 4095372    | 3      |
| 7          | 3.928278 | 7692465    | 3      |
| 8          | 5.337247 | 11374471   | 3      |
| 9          | 4.912243 | 7739373    | 3      |
|            |          | (省略)       |        |
| 47         | 2.687243 | 3268545    | 3      |

ここで、\_merge という新しい変数が生成されていますが、これについては後述します。なお、続けて他のデータセットをmerge する場合は、\_merge を drop しておいてください。

# 2-3. 少数のデータセットから大規模データに値を割り当てる

さて、2-2のケースでは、接続する2つのファイルの長さは等しくなっていました。しかし、現実の ニーズとしては、2-1で作成した都道府県×年次×項目のファイルに、年次別の全国一律のデ ータ、たとえば物価指数を接続するといった作業が必要になることもあります。このような場合は どうしたらいいのでしょうか?

例として、以下のような年次別の全国平均の物価指数を2-1で作成したデータセットに接続す る方法について考えましょう。

| Pric | e.dta |
|------|-------|
| Year | Price |
| 1980 | 100.0 |
| 1981 | 101.2 |
|      | (省略)  |
| 2000 | 132.2 |

接続方法は、基本的に2-2と同じで、まず、接続する際のキーとなる変数で、接続する2つの ファイルが sort されているかどうか確認します。この場合は、年次を示す Year がキー変数となり ます。問題がなければ、一方のデータを開いた状態で、merge を行います。

# use Production80-00.dta merge year using Price.dta

結果は、うまくいけば、以下の表のようになります。Year が同一のところには、必ず同じ Price の値が入っていることが確認できます。

| Prefecture Year | Product | ion  | Price |       |
|-----------------|---------|------|-------|-------|
| 1               | 1980    | 1200 |       | 100.0 |
| 2               | 1980    | 800  |       | 100.0 |
| 3               | 1980    | 1921 |       | 100.0 |
|                 | (省略)    |      |       |       |
| 1               | 1981    | 1310 |       | 101.2 |
| 2               | 1981    | 1050 |       | 101.2 |
|                 | (省略)    |      |       |       |
| 1               | 2000    | 2560 |       | 132.3 |
| 2               | 2000    | 1420 |       | 132.3 |
|                 |         |      |       |       |

#### 2-4. 不完全一致のデータセットの接続

(1)~(3)までのデータセットでは、2つのデータセットに含まれるキーとなる変数が完全な対応関係がありました。しかし、実際には、以下のようなキーとなる変数が部分的にしか対応していない ケースがままあります。以下のような例を考えましょう。

even.dta

|        | odd.dta |
|--------|---------|
| number | Even    |
| 5      | 10      |
| 6      | 12      |
| 7      | 14      |
| 8      | 16      |

| number | Odd |
|--------|-----|
| 1      | 1   |
| 2      | 3   |
| 3      | 5   |
| 4      | 7   |
| 5      | 9   |

この2つのファイルのキーとなる変数は number です。ですが、2つのファイルに重複する変数 は、"5"だけです。このケースで、number をキーに merge すると以下のようになります。

#### use even.dta

#### merge number using odd.dta

| number | Even | Odd | _merge |
|--------|------|-----|--------|
| 5      | 10   | 9   | 3      |
| 6      | 12   |     | 1      |
| 7      | 14   |     | 1      |
| 8      | 16   |     | 1      |
| 1      |      | 1   | 2      |
| 2      |      | 3   | 2      |
| 3      |      | 5   | 2      |
| 4      |      | 7   | 2      |

この場合、even.dtaとodd.dtaのnumber変数で共通なのは「5」のみなので、キーとして指定した変数が共通する場合のみ同じ行にodd.dtaが接続され、異なる場合には異なる行にodd.dtaを接続されます。

なお、merge コマンドを実行すると、\_merge という変数が副産物として生成されます。\_merge は、 二つのデータの結合状態を表します。

\_merge=3 : キーに指定した変数が結合前の二つのファイル双方に存在していた場合。 \_merge=1 : キーにした変数が、merge 実行前に開いていたファイルのみに存在していた場合。 \_merge=2 : キーにした変数が、merge 実行時に呼び出しファイルのみに存在していた場合。

even.dtaとodd.dtaの接続を例にすると、

even.dta と odd.dta の両方のファイルに含まれていたデータ:\_merge=3 even.dta のみに含まれていたデータ:\_merge=1 odd.dta のみに含まれていたデータ:\_merge=2

となります。

# 第3章 記述統計による分析(表の作成)

# 3-1. カテゴリー区分された変数(質的データ)

カテゴリー区分されたデータとは、主に質的(離散)データを指します。一般的には、その区分か数 値なのか文字なのかは問われません。大きく分けると①順位尺度と②名義尺度の2種類の尺度 により区分されます。順位尺度は、例えば銀行の預金格付けのように、信用度の高い順から AAA ~C まで区分されるように、順位を表わす質的データになります。名義尺度は、性別(男、女)や結 婚の有無(既婚、未婚、既婚暦有独身、他)などのように特性を表わす質的データです。

以下のデータセット例から STATA による記述統計の取り方をみましょう。(特に記載のない限り3-1~3-2を通じて以下の同一データセット例を使ってコマンド例を紹介することとします。)

| id    | time | yesno | age | family | у      | x1     | x2    |
|-------|------|-------|-----|--------|--------|--------|-------|
| 10001 | 1    | 0     | 36  | 3      | 801.2  | 250. 1 | 22. 8 |
| 10001 | 2    | 0     | 37  | 3      | 840.0  | 200. 5 | 26. 7 |
| 10001 | 3    | 1     | 38  | 4      | 845.3  | 287. 5 | 19.4  |
| 10002 | 1    | 1     | 24  | 2      | 523.0  | 184. 1 | 35.8  |
| 10002 | 2    | 1     | 25  | 2      | 534. 1 | 197.8  | 15. 2 |
| 10002 | 3    | 1     | 26  | 2      | 591.5  | 205. 5 | 40.9  |
| 10003 | 1    | 0     | 31  | 3      | 750.0  | 276. 5 | 55.4  |
| · ÷   | · ÷  | · ÷   | · : | • :    | • :    | · ÷    | · :   |
| 11168 | 2    | 1     | 40  | 4      | 920.1  | 321.7  | 28.9  |
| 11168 | 3    | 1     | 41  | 4      | 900.4  | 312.8  | 52. 7 |

3-1、3-2で扱う共通データセット例

・idとtimeはデータをパネルデータの構成を表わす変数。

・yesno はカテゴリー区分された変数、その他は連続変数とする。

# (1) 表の作成

まず、tab コマンドを使ってカテゴリー変数の分布を見ましょう。一変数だけに着目する場合、度数、 相対度数、累積相対度数が確認できます。

| . tab yesno |                    |                  |                   |
|-------------|--------------------|------------------|-------------------|
| yesno       | Freq.              | Percent          | Cum.              |
| 0           | 1, 410<br>  2, 094 | 40. 24<br>59. 76 | 40. 24<br>100. 00 |
| Total       | 3, 504             | 100. 00          |                   |

ここに条件式(if)を加え、範囲を指定することも可能です。また、plot オプションを加えると、相対度数を視覚的に確認することもできます。

| . tab yesno | f time==1 ,p | lot                                     |
|-------------|--------------|-----------------------------------------|
| yesno       | Freq.        |                                         |
| 0           | 480          | +                                       |
| 1           | 688          | *************************************** |
| Total       | 1, 168       | +                                       |

さらに、二つの変数を指定して分布を確認することもできます。特に指定がない場合、度数のみが 表示されます。相対度数を確認するには、行ごとの相対度数(col)、列ごとの相対度数(row)の 表示をオプションで指定する必要があります。また、度数表示を省略し、相対度数のみ確認したい 時には、nofreqのオプションを指定します。

| . tab yesno time ,row nofreq |        |        |        |        |  |  |  |
|------------------------------|--------|--------|--------|--------|--|--|--|
| time                         |        |        |        |        |  |  |  |
| yesno                        | 1      | 2      | 3      | Total  |  |  |  |
| 0                            | 34. 04 | 33. 83 | 32. 13 | 100.00 |  |  |  |
| 1                            | 32.86  | 33.00  | 34. 15 | 100.00 |  |  |  |
| <br>Total                    | 33. 33 | 33. 33 | 33. 33 | 100.00 |  |  |  |

また、二つの変数を指定する時、all オプションで分布の情報も得られます。

| . tab yesno | time ,all row  | nofreq   |            |        |
|-------------|----------------|----------|------------|--------|
|             |                | time     |            |        |
| yesno       | 1              | 2        | 3          | Total  |
| 0           | 34. 04         | 33. 83   | 32.13      | 100.00 |
| 1           | 32.86          | 33.00    | 34.15      | 100.00 |
| Total       | 33. 33         | 33. 33   | 33.33      | 100.00 |
| Pe          | earson chi2(2) | = 1.5594 | Pr = 0.45  | 9      |
| likelihood- | -ratio chi2(2) | = 1.5626 | Pr = 0.45  | 8      |
|             | Cram≻'s V      | = 0.0211 |            |        |
|             | gamma          | = 0.0320 | ASE = 0.02 | .8     |
| Ke          | endall's tau-b | = 0.0181 | ASE = 0.01 | 6      |

(2)ラベルの設定

カテゴリー区分された変数には、ラベルを設定することができます。

銀行の格付けのように複数のカテゴリー(AAA~C)が存在する時、推定のための便宜上、各カテ ゴリーに数値を与えることがあります(たとえば AAA を 1、AA を 2、…など)。ただしこの時、分布を 示す記述統計を取ると、数値に変換されたカテゴリーが示されるため、カテゴリー区分が多けれ ば多いほど、数値の与え方について混乱してしまいます。ラベルを設定することで、その混乱を回 避することができます。以下では、3-1.(1)の yesno 変数について例示しましょう。

下の例の下線部分に適当なラベル名を設定し、続いて①カテゴリー項目、②<sup>2 / /</sup> 内に項目ラベル名を指定し、①②を1セットとして必要なカテゴリー項目分のセット数だけ記述します。ただし、必ずしも全カテゴリー項目にラベルを作る必要はありません。

label define <u>yesnolabel</u> 0 "no" 1 "yes"

label value yesno yesnolabel

✓ ここには、指定されたラベルに置き換えられる変数名を指定します。

ラベルを設定したことで、2-1.(1)の表は以下のように表示されます。

| yesno       | Freq.            | Percent          | Cum.              |
|-------------|------------------|------------------|-------------------|
| no  <br>yes | 1, 410<br>2, 094 | 40. 24<br>59. 76 | 40. 24<br>100. 00 |
| Total       | 3, 504           | 100. 00          |                   |

以下に示すように、ラベルを設定しなかったカテゴリー項目に対し、add オプションを使うことでラ ベル項目を追加することが可能です。下線部分には追加先の既存ラベル名を指定します。

label define <u>vesnolabel</u> 2 "nuetral" 3 "no answer" , add label value yesno <u>vesnolabel</u>

また、一度設定したラベルを削除したい場合は、drop オプションを使用します。

label drop yesno

複数の変数にラベル設定しているときに、すべてのラベルを一挙に削除したい場合は、変数名を \_all とします。すなわち、以下のコマンドを入力します。

label drop \_all

### 3-2. 連続変数の記述統計量をみる

(1) sum コマンドによる表示

5種類の基本的な統計量(度数、平均、標準偏差、最小値、最大値)を見る場合は、sum コマンド が便利です。条件式を加えることも可能です。

| . sum y i | f yes | sno==1 |           |           |     |      |
|-----------|-------|--------|-----------|-----------|-----|------|
| Variable  | l     | 0bs    | Mean      | Std. Dev. | Min | Max  |
|           | у     | 2094   | 821. 1025 | 490. 4918 | 2   | 5840 |

通常、統計量は桁数の表示が統一されていません。桁数表示を統一するには format コマンドを 使います。

format (桁数表示指定をしたい)変数名 %w.df

format コマンドライン中、w に表示幅の指定数を、d に小数点以下の桁数を記入します。例えば、 小数点 2 桁まで表示するとき、以下のように format コマンドの利用により、前ページと桁表示の 違いが確認できます。

| . format y %9.2f<br>. sum y if yesno= | =1, format |        |           |      |          |
|---------------------------------------|------------|--------|-----------|------|----------|
| Variable                              | 0bs        | Mean   | Std. Dev. | Min  | Max      |
| y                                     | 2094       | 821.10 | 490. 49   | 2.00 | 5840. 00 |

この例では、変数 y の「全体を 9 桁で、小数点以下を 2 桁の数値で表示せよ」、というコマンドを意味します。

(2) tabstat コマンドによる表示

上の5種類以外の記述統計を見るには tabstat コマンドが便利です。具体的には、次の統計量 を見ることが可能です。

| statname | definition                       |
|----------|----------------------------------|
|          |                                  |
| mean     | mean                             |
| count    | count of nonmissing observations |
| n        | same as count                    |
| sum      | sum                              |
| max      | maximum                          |
| min      | minimum                          |
| range    | range = max - min                |

| sd       | standard deviation                        |
|----------|-------------------------------------------|
| var      | variance                                  |
| cv       | coefficient of variation (sd/mean)        |
| semean   | standard error of mean = sd/sqrt(n)       |
| skewness | skewness                                  |
| kurtosis | kurtosis                                  |
| median   | median (same as p50)                      |
| p1       | 1st percentile                            |
| р5       | 5th percentile                            |
| p10      | 10th percentile                           |
| p25      | 25th percentile                           |
| p50      | 50th percentile (same as median)          |
| p75      | 75th percentile                           |
| p90      | 90th percentile                           |
| p95      | 95th percentile                           |
| p99      | 99th percentile                           |
| iqr      | interquartile range = p75 - p25           |
| q        | equivalent to specifying "p25 p50 p75" $$ |
|          |                                           |

どの統計量を表示するかを stat()の()内に指定する必要がありますが、この記述がない場合 は平均値(mean)のみが表示されます。tabstat コマンドでは、得られる統計量が増えるだけでなく、 カテゴリー別に記述することも可能となります。以下では、条件式(if)を指定し、カテゴリー別(by) に表示した例を示しましょう。

| . tabstat                         | y if yesno==                 | 1 ,by(ti  | me) stat(m | iean n sd su | m max min ra | ange) |       |
|-----------------------------------|------------------------------|-----------|------------|--------------|--------------|-------|-------|
| Summary for<br>by ca <sup>-</sup> | r variables:<br>tegories of: | y<br>time |            |              |              |       |       |
| time                              | mean                         | N         | sd         | sum          | max          | min   | range |
| 1                                 | 827. 9515                    | 688       | 480. 8856  | 569630.6     | 5005         | 44    | 4961  |
| 2                                 | 816. 2902                    | 691       | 509.9375   | 564056.6     | 5140         | 3     | 5137  |
| 3                                 | 819. 163                     | 715       | 481.002    | 585701.6     | 5840         | 2     | 5838  |
| Total                             | 821. 1025                    | 2094      | 490. 4918  | 1719389      | 5840         | 2     | 5838  |

複数の変数に関する記述統計をとることもできます。ここでは、行ごとの各変数が表示されるよう col(variable)と指定しています。col(stat)とすると行ごとに統計量が表示されます。ここでは、 表側が表示されませんが、コマンドラインで記述した順番に表示されています。

| . tabstat              | age family                 | y x1 x2 ,b         | y(time) st | at(mean n | sd) col(va | ariable) n | ototal |
|------------------------|----------------------------|--------------------|------------|-----------|------------|------------|--------|
| Summary st<br>by categ | atistics: m<br>ories of: t | iean, N, sd<br>ime |            |           |            |            |        |
| time                   | age                        | family             | У          | x1        | x2         |            |        |
| 1                      | 32. 11387                  | 3.946062           | 710. 2808  | 229. 8031 | 33. 32908  |            |        |
|                        | 1168                       | 1168               | 1168       | 1168      | 1168       |            |        |
|                        | 4. 314128                  | 1. 560986          | 437. 1246  | 137. 7185 | 68. 29036  |            |        |
| 2                      | 33. 11387                  | 3. 97089           | 701. 2497  | 242. 1618 | 30. 23334  |            |        |
|                        | 1168                       | 1168               | 1168       | 1168      | 1168       |            |        |
| l                      | 4. 314128                  | 1.563566           | 449. 4901  | 150. 8053 | 63.96301   |            |        |
| 3                      | 34. 11387                  | 4. 029966          | 706.0007   | 245. 3844 | 31. 77663  |            |        |
|                        | 1168                       | 1168               | 1168       | 1168      | 1168       |            |        |
| ĺ                      | 4. 314128                  | 1. 539525          | 431. 1006  | 158. 5248 | 72. 25981  |            |        |
|                        |                            |                    |            |           |            |            |        |

上の例では、コマンドの最後に nototal というオプションがつけてあります。このオプションをつない と、各変数について、全カテゴリー合計の統計量(平均、標本数、標準偏差)も一緒に表示されま す。

(3) table コマンドによる表示

table コマンドでは、特に指定がない場合には各データ値に対する度数が表示されるため、3-1.(1)の tab コマンドに類似しています。違いは、table コマンドでは行ごと(col)列ごと(row) の合計値を表示しないという点です。合計値を表示するには row col オプションを加える必要が あります。

- 例) table yesno time, row col
  - ⇒これで"tab yesno time"と同一の表が作成されます。

ただし、tab コマンドは各データ値ごとの度数が表示されるため、連続変数には向かないのに対し、 table コマンドでは以下のようにカテゴリー変数に対応した連続変数の統計量を得ることも出来 ます。データセット全体の統計量を得るには、row オプションで全データを対象とした統計量を得 るのが良いでしょう。また、format()オプションにより、データの桁表示指定が可能です。()内 の桁数指定方法などは3-2.(1)をご参照ください。

| . <b>t</b> able time, | c(mean y sd | l y mean x1 | sd x1) format | (%9.2f) row |
|-----------------------|-------------|-------------|---------------|-------------|
| time                  | mean(y)     | sd(y)       | mean(x1)      | sd(x1)      |
| 1                     | 710.28      | 437.12      | 229.80        | 137.72      |
| 2                     | 701.25      | 449.49      | 242.16        | 150.81      |
| 3                     | 706.00      | 431.10      | 245.38        | 158.52      |
| Total                 | 705.84      | 439.20      | 239.12        | 149.37      |
|                       |             |             |               |             |

# カテゴリー変数を指定した後、c()の()内に①得たい統計量の種類、②変数名、の①②を1セットとして5セットまで指定できます。①には、以下の統計量を指定可能です。

| freq (for   | frequency)                                 |
|-------------|--------------------------------------------|
| mean (for   | mean of varname)                           |
| sd (for     | standard deviation)                        |
| sum (for    | sum)                                       |
| rawsum (for | sums ignoring optionally specified weight) |
| count (for  | count of nonmissing observations)          |
| n (sam      | e as count)                                |
| max (for    | maximum)                                   |
| min (for    | minimum)                                   |
| median (for | median)                                    |
| pl (for     | 1st percentile)                            |
| p2 (for     | 2nd percentile)                            |
| :           |                                            |
| p50 (for    | 50th percentile same as median)            |
| :           |                                            |
| p98 (for    | 98th percentile)                           |
| p99 (for    | 99th percentile)                           |
| iqr (for    | interquartile range)                       |

カテゴリー別に連続変数の統計量を得られるという点は2-2.(2)の tabstat と同じ機能です。 特徴として、tabstat は同時に出力可能な変数が多いという利点があり、table は表側が表示さ れるため視覚的に判別しやすい表を出力できる利点があります。

さらに、table では by()オプションを指定することで2段階のカテゴリー分類をすることが可能です。

| . table tim | ie, c(mean y s | d y mean x1 | sd x1) by(ye | sno)     |
|-------------|----------------|-------------|--------------|----------|
|             |                |             |              |          |
|             |                |             |              |          |
| yesno and   |                |             |              |          |
| time        | mean(y)        | sd(y)       | mean(x1)     | sd(x1)   |
| +           |                |             |              |          |
| no          |                |             |              |          |
| 1           | 541.6194       | 292.3441    | 239.8083     | 138.2875 |
| 2           | 534. 5977      | 267.1221    | 257.675      | 168.9387 |
| 3           | 527.3891       | 249.2619    | 245. 2759    | 108.4163 |
| ves         |                |             |              |          |
| 1           | 827.9515       | 480.8857    | 222.8227     | 136.9881 |
| 2           | 816.2902       | 509.9375    | 231.453      | 135.9933 |
| 3           | 819.163        | 481.002     | 245. 4531    | 183.3931 |
|             |                |             |              |          |

### (3) データを記述統計量で構成されるデータセットに変換する

collapse コマンドは、データを記述統計量で構成されるデータセットに置き換えます。(そのため、 collapse コマンドで指定しなかったデータは全て消失する点に注意が必要です。)

collapse () var

()内に以下の統計量を指定します。指定のない場合は平均値で計算されます。

| statname | definition                                |
|----------|-------------------------------------------|
| mean     | means                                     |
| sd       | standard deviations                       |
| sum      | sums                                      |
| rawsum   | sums ignoring optionally specified weight |
| count    | number of nonmissing observations         |
| max      | maximums                                  |
| min      | minimums                                  |
| median   | medians                                   |
| p1       | lst percentile                            |
| p2       | 2nd percentile                            |
| :        | 3rd 49th percentiles                      |
| p50      | 50th percentile (same as median)          |
| :        | 51st 97th percentiles                     |
| p98      | 98th percentile                           |
| p99      | 99th percentile                           |
| iqr      | interquartile range                       |
|          |                                           |

var の部分に変数名を指定します。また、by()オプションによりカテゴリー別に記述統計量を作成できます。ここには複数の変数を指定することが可能です。

ためしに、複数年度の企業別財務データから、企業別の平均値を抽出する方法を見てみましょう。今、データセットには、以下のように、企業の ID 番号 (id)、年次 (year)、従業者数 (labor)、 賃金 (wage)のデータが含まれているとします。

| . list | t fid ye | ear labo   | or wage |           |
|--------|----------|------------|---------|-----------|
| -      | +        |            |         | +         |
|        | fid      | year       | labor   | wage      |
|        |          |            |         |           |
| 1.     | 6501     | 1994       | 80493   | 7.459692  |
| 2.     | 6501     | 1995       | 78368   | 7.559527  |
|        | (省略      | <b>§</b> ) |         |           |
| 6.     | 6501     | 1999       | 66046   | 8. 325031 |
| 7.     | 6501     | 2000       | 58739   | 8. 417542 |
| 8.     | 6501     | 2001       | 54017   | 8.820519  |
| 9.     | 6501     | 2002       | 48590   | 9. 560157 |
| 10.    | 6502     | 1994       | 74558   | 6.690483  |
|        | (省略      | <b>}</b> ) |         |           |
| 14.    | 6502     | 1998       | 66471   | 8.003415  |
| 15.    | 6502     | 1999       | 63328   | 7.752084  |
|        | (省略      | <b>5</b> ) |         |           |

データセットの概要は、

| . des         |          |             |             |                |  |
|---------------|----------|-------------|-------------|----------------|--|
| Contains data |          |             |             |                |  |
| obs:          | 2,910    |             |             |                |  |
| vars:         | 6        |             |             |                |  |
| size:         | 75,660 ( | (99.3% of m | emory free) |                |  |
|               | storage  | display     | value       |                |  |
| variable name | type     | format      | label       | variable label |  |
| year          | int      | %8.0g       |             |                |  |
| fid           | long     | %12.0g      |             |                |  |
| labor         | long     | %12.0g      |             |                |  |
| slsprofit     | float    | %9.0g       |             |                |  |
| wage          | float    | %9.0g       |             |                |  |
| rdsls         | float    | %9.0g       |             |                |  |

ここで、企業ごと(fid)、従業者数、賃金の平均値を求めたいとします。

collapse (mean) labor wage,by(fid)

データセットは以下のような形に変更されます。

| . des         |         |             |              |                |  |
|---------------|---------|-------------|--------------|----------------|--|
| Contains data |         |             |              |                |  |
| obs:          | 4       |             |              |                |  |
| vars:         | 3       |             |              |                |  |
| size:         | 72      | (99.9% of m | nemory free) |                |  |
|               |         |             |              |                |  |
|               | storage | display     | value        |                |  |
| variable name | type    | format      | label        | variable label |  |
|               | •       |             |              |                |  |
| f1d           | 1nt     | %8.0g       |              |                |  |
| labor         | double  | e %12.0g    |              | (mean) labor   |  |
| wage          | float   | %9.0g       |              | (mean) wage    |  |
|               |         |             |              |                |  |
| Sorted by: f  | id      |             |              |                |  |
|               |         |             |              |                |  |

確かに、標本数が減少しています。ただし、データセットは置き換わりますが、「Stata Result」画 面に表が表示されるわけではありません。統計量を確認するには、別途 list コマンドにより画 面表示をするか、browse コマンドによりデータ表示をする必要があります。collapse コマンドと browse コマンドを使うことで、簡単にエクセルなどの表計算ソフトにデータを移し変えることが可 能となります。

上記の作業結果を、list すると以下のようになります。

| ++<br>  labor wage  <br>  <br>1.   67156.77778 8.307827  <br>2.   63760.33333 7.962406  <br>3.   45268.22222 10.37165  <br>4.   11891.44444 7.572086                    | . list                                                | labor wage                                                   |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|
| 1.       67156.77778       8.307827         2.       63760.33333       7.962406         3.       45268.22222       10.37165         4.       11891.44444       7.572086 | +                                                     | labor                                                        | +<br>wage                                        |
|                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 67156. 77778<br>63760. 33333<br>45268. 22222<br>11891. 44444 | 8. 307827<br>7. 962406<br>10. 37165<br>7. 572086 |

by()オプションを使う際に、複数の変数を指定することも可能です。たとえば、市区町村別のデ ータセットがあったとして、個々のデータは都道府県コード(prefecture)と市区町村コード(city) で識別されているとします。

| Prefecture | city | Production |
|------------|------|------------|
| 1          | 101  | 1200       |
| 1          | 101  | 800        |
| 1          | 102  | 1921       |
|            | (省略) |            |
| 2          | 101  | 1310       |
| 2          | 104  | 1050       |
|            | (省略) |            |
| 3          | 101  | 2560       |
| 3          | 102  | 1420       |
|            |      |            |

このよう複数の変数で識別さているデータセットの場合、by オプションで複数の変数を指定します。

collapse (sum) production, by(prefecture city)

また、collapse コマンドを使うとデータセット自体が入れ替わってしまいます。そこで、同じデータ セットで何度も collapse コマンドを使って、複数のデータセットを作成する場合は、処理前にデータ を保存し、collapse で処理した後に、再度データを呼び出す必要があります。このような場合には、 preserve コマンドと restore コマンドが便利です。

preserve は、データセットをメモリー上に保存(ファイルの上書き・新規作成は行わない)し、 restore は、preserve でメモリー上に保存したデータセットを呼び出してくれます。次の例では、 collapse の前後に、preserve と restore を入れて、collapse 後に変更になったデータセットを、 restore により collapse 以前のデータに復元する処理を確認したものです。

| . pres                           | serve                    |                 |                   |                |                |  |
|----------------------------------|--------------------------|-----------------|-------------------|----------------|----------------|--|
| . coll                           | lapse (me                | ean) labo       | r wage, by        | y(fid)         |                |  |
| . des<br>Contai                  | ins data                 |                 |                   |                |                |  |
| obs                              | :                        | 4               |                   | ← collapse によ  | り標本数が減少        |  |
| vars:<br>size:                   | :                        | 3<br>80 (       | 99.9% of          | memory free)   |                |  |
| variak                           | ole name                 | storage<br>type | display<br>format | value<br>label | variable label |  |
| fid                              |                          | long            | %12. Og           |                |                |  |
| labor                            |                          | double          | %12.0g            |                | (mean) labor   |  |
| wage                             |                          | float           | %9. 0g            |                | (mean) wage    |  |
| . <b>rest</b><br>. des<br>Contai | t <b>ore</b><br>ins data | ←[              | preserve          | 以前のデータセッ       | 小を復元           |  |
| obs                              | :                        | 36              |                   | ← collapse 処玛  | 里の前の標本数に戻る     |  |
| vars                             |                          | 4               |                   |                |                |  |
| size                             | :                        | 648(            | 99.9% of          | memory free)   |                |  |
| variat                           | ole name                 | storage<br>type | display<br>format | value<br>label | variable label |  |
| year                             |                          | int             | %8. Og            |                |                |  |
| fid                              |                          | long            | %12.0g            |                |                |  |
| labor<br>wage                    |                          | long<br>float   | %12.0g<br>%9.0g   |                |                |  |
|                                  |                          |                 |                   |                |                |  |
| . list                           | t<br>+                   |                 |                   | +              |                |  |
|                                  | year                     | fid I           | abor              | wage           |                |  |
| 1                                | 1994                     | 6501 8          | 0493 7            | <br>459692     |                |  |
| 2.                               | 1995                     | 6501 7          | 8368 7.           | . 559527       |                |  |
| 3.                               | 1996                     | 6501 7          | 5590 8.           | . 030771       |                |  |

### 3-3. 階級別カテゴリー変数の作成(度数分布表の作成)

度数分布表などを作成する場合、連続変数を階級別のカテゴリー変数(階級値)に置き換える必要があります。たとえば、電機メーカーの財務データを使って、従業員階級別の度数分布表の作成方法を考えましょう。最終的に作成したい表は、以下のような従業員数階級別の企業数を表示した表になります。

| 従業員数<br>階級 | 企業数 | Percent | 累積     |
|------------|-----|---------|--------|
| 1~99       | 21  | 6. 29   | 6. 29  |
| 100~999    | 191 | 57.19   | 63.47  |
| 1000~      | 122 | 36.53   | 100.00 |
| <br>Total  | 334 | 100.00  |        |

この表を作成するためには、各企業を従業員数階級ごとに振り分けなければなりません。この作 業をオーソドックスに進めるとなると、以下のように replace コマンドを繰り返し実行することになり ます。

gen newvar=. replace newvar=x1 if var<=x1 replace newvar=x2 if var>x1&var<=x2

replace newvar=xn if var>x1&var>x2&var>x3&var>...

この作業を replace コマンドを使って地道に作業するのはかなり面倒です。そこで、以下の、 recode 関数を用います。

gen newvar=recode(var, x1,x2,x3,...,xn)

ただし、x1<x2<x3<...<xn とします。 このコマンドは上記ののコマンド群と同義になります。上の具体例のように規模別に 99 人以下、 100 人以上 999 人、1000 人以上のカテゴリー変数を作成したい場合、

gen labor\_category=recode(labor, 99, 999,1000)

とします。このコマンドは以下の作業と同じ結果になります。

gen labor\_category=. replace labor\_category =99 if labor<=99 replace labor\_category =999 if labor>99&labor<=999 replace labor\_category =1000 if labor>999

従業員数のように整数値であれば問題ないですが、比率のように実数値の場合は注意が必要で す。たとえば、パート従業員比率のカテゴリーを作成する場合は。 gen part\_category=recode(ratio\_part, 0.25, 0.5, 0.75, 1)

とします。このコマンドは以下の作業と同じ結果になります。

gen part\_category=. replace part\_category =0.25 if ratio\_part<=0.25 replace part\_category =0.5 if ratio\_part>0.25&ratio\_part<=0.5 replace part\_category =0.75 if ratio\_part>0.5&ratio\_part<=0.75 replace part\_category =1 if ratio\_part>0.75

例として、電気機器メーカー334 社の従業者数の度数分布表を作成しましょう。 まず、データの記述統計量を sum で確認しましょう。

| . su labor |     |          |           |     |       |
|------------|-----|----------|-----------|-----|-------|
| Variable   | 0bs | Mean     | Std. Dev. | Min | Max   |
| labor      | 334 | 2416.356 | 7143. 216 | 4   | 58739 |

次に、この 334 社のデータを、3 階級の階級値に置き換えた変数を作成します。 . gen labor\_category=recode(labor,99,999,1000)

これを tabulate で表示すると、以下のような度数分布表が完成します。

| . tabulate labor_category |       |         |        |  |  |  |  |  |
|---------------------------|-------|---------|--------|--|--|--|--|--|
| labor_categ               |       |         |        |  |  |  |  |  |
| ory                       | Freq. | Percent | Cum.   |  |  |  |  |  |
| 99                        | 21    | 6. 29   | 6. 29  |  |  |  |  |  |
| 999                       | 191   | 57.19   | 63.47  |  |  |  |  |  |
| 1000                      | 122   | 36.53   | 100.00 |  |  |  |  |  |
| Total                     | 334   | 100.00  |        |  |  |  |  |  |

# 3-4. データのエクセルへの移行

論文を書く際には、Stata で作成した表などを、Result ウインドウのログではなく、EXCEL 等で整形 して利用することが多いかと思います。Stata では、結果表や元データの一部を EXCEL に貼り付 けたり、、全データシートを EXCEL 形式に変換することができます。

### (1) 作表結果の貼り付け

Result Windowの画面をカット&ペーストすることで簡単に作表結果をEXCELに移行することができます。まず、Result Windowの結果をマウスで領域指定します。次に、右クリックして、図3-1のように"Copy Table"を選択します。

| . su labor waş | ſe   |        |                       |        |     |          |
|----------------|------|--------|-----------------------|--------|-----|----------|
| Variable       | Obs  | Me     | an Std.               | Dev.   | Min | Max      |
| labor          | 2910 | 2615.4 | 59 7828               | .013   | 0   | 80493    |
| wage_f         | 2910 | 6.879  | <u>C</u> opy Text     | Ctrl+C | 0   | 28.11765 |
|                |      |        | Copy <u>T</u> able    |        |     |          |
| ·              |      |        | <u>P</u> rint Results | i      |     |          |
|                |      |        | <u>F</u> ont          |        |     |          |

図 3 — 1

次に、EXCELを開き、「貼り付け」を行うと、図3-2のように表をそのまま EXCEL 上で復元することができます。

|     | 2 🖬 🔒    | 8 🖨 🖪 | 🌮 🕺 🖻    | <b>(1)</b> | רא ד 🖓 ד | Σ • A    | ZI I |
|-----|----------|-------|----------|------------|----------|----------|------|
|     | <b>-</b> |       |          | 貼り付け       |          |          |      |
|     | A2       | -     | fx       |            |          |          |      |
|     | A        | В     | С        | D          | Е        | F        | (    |
| 1   |          |       |          |            |          |          |      |
| 2   |          |       |          |            |          |          |      |
| 3   | Variable | Obs   | Mean     | Std. Dev.  | Min      | Max      |      |
| - 4 |          |       |          |            |          |          |      |
| 5   | labor    | 2910  | 2615.459 | 7828.013   | 0        | 80493    |      |
| 6   | wage f   | 2910  | 6.879506 | 1.807956   | 0        | 28.11765 |      |
| 7   |          |       |          |            |          |          | ra.  |
| 8   |          |       |          |            |          |          |      |

図 3 — 2

### (2) データの貼り付け

データの一部を EXCEL に移行させる際、まず browse コマンドにより、移行させたいデータを stata browser に表示させます。例えば、

### browse labor if labor<10000

表示される stata browser の範囲を選択しコピーします(図3-3)。EXCEL を開き、「貼り付け」を

# 行うとEXCEL 上に復元されます(図3-4)。

🗵 3 — 3

|     | 🗖 Stata Browser |         |                 |              |       |               |              |                |
|-----|-----------------|---------|-----------------|--------------|-------|---------------|--------------|----------------|
|     | E               | reserve | <u>R</u> estore | <u>S</u> ort | <<    | $\rightarrow$ | <u>H</u> ide | <u>D</u> elete |
|     |                 |         |                 |              | labor | [34] =        | 9963         |                |
| Cor |                 |         | la              | bor          |       |               |              |                |
| Pas | ite             | 34      |                 | 9963         |       |               |              |                |
| Eor | ıt              | 35      |                 | 9697         |       |               |              |                |
|     |                 | 36      |                 | 8576         |       |               |              |                |
|     |                 |         |                 |              |       |               |              |                |

図 3 - 4



# (2) データの形式変換

Stata 上でデータを加工した後、その現状の加工済データのまま EXCEL 形式で保存しておきたい 時などには outsheet コマンドを用いて全データもしくは指定変数系列を形式変換させます。

# outsheet using data , replace

↑ 同名の既存ファイルに上書きする場合の指定(指定しない際には ", replace "を除く) 新たに保存するファイル名

この時、データはタブ区切り形式で data.out として保存されます。これを EXCEL 形式まで変換 するには、まず EXCEL の「ファイル」の「開く」から.out として保存されたファイルを指定します。テ キストファイル・ウィザードが開くので「カンマやタブなどの区切り文字によってフィールドごとに区 切られたデータ」を指定すると EXCEL 形式でデータを確認できます。

# outsheet using data , replace comma

とすると、タブ区切りではなくコンマ区切り形式で、data.out ファイルが保存されます。replace 以降に nonames を加えると変数コード行を除いたファイルが保存されます。

# 第4章 回帰分析・離散選択モデルの推定

本節では、回帰分析および離散選択モデルの推定を説明します。ほとんどの回帰分析が

#### コマンド名 [被説明変数][説明変数]

の順に並べてリターンキーを押せば結果が出力されます。コマンドによっては、オプションをつけることも可能です。その際は、通常、説明変数の後ろに、カンマをつけてその後ろにオプションを指定します。

コマンド名 [被説明変数][説明変数],[オプション]

また、サンプルを限定して分析する場合、条件式 if でサンプルを絞ることができます。 コマンド名 [被説明変数] [説明変数] if condition==1

# 4-1. 回帰分析

本節では、最も単純な最小二乗法(以下、OLS)による回帰分析を説明します。本章の冒頭で説明したとおり、コマンド名 被説明変数 説明変数の順に並べれば回帰分析を行うことができます。 最も単純な消費関数を例に挙げて OLS を説明します。 推計式は、

$$Cons_t = 定数項 + Y_t + \varepsilon_t$$

です。 $Cons_t$ はt期の消費、 $Y_t$ はt期の所得、 $\varepsilon_t$ 誤差項です。

| year | cons     | Y        |
|------|----------|----------|
| 1980 | 171396.4 | 312835.2 |
| 1981 | 175753.5 | 322586.0 |
| 1982 | 183732.8 | 333273.5 |
| 1983 | 187904.2 | 341441.8 |
| 1984 | 191204.8 | 353575.1 |
| 1985 | 199016.7 | 370527.9 |
| 1986 | 205480.0 | 379843.8 |
| 1987 | 216162.3 | 404032.7 |
| 1988 | 226153.3 | 426670.6 |
| 1989 | 240139.1 | 451819.8 |
| 1990 | 245054.9 | 470701.9 |
| 1991 | 251837.0 | 480778.1 |
| 1992 | 256197.7 | 482596.4 |
| 1993 | 262698.4 | 484486.3 |
| 1994 | 270053.6 | 492857.9 |
| 1995 | 273573.4 | 505715.3 |
| 1996 | 276604.6 | 520134.5 |
| 1997 | 276918.2 | 523999.4 |
| 1998 | 279262.5 | 516623.9 |
| 1999 | 277907.6 | 518878.4 |

### OLSの基本式

#### reg 被説明変数 説明変数 if 条件式, (option)

この式が、最も基本的な OLS を実行するコマンドです。Stata では、option で指定をしなければ、自動的に回帰式に定数項が含まれます。したがって、何も条件やオプションをつけないで、先の消費関数を推計するコマンドは、

reg cons y

| となります。 |  |
|--------|--|

| Source                              | SS                                      | df                     | MS                             |                | Number of obs                                                   | = 20                                                      |
|-------------------------------------|-----------------------------------------|------------------------|--------------------------------|----------------|-----------------------------------------------------------------|-----------------------------------------------------------|
| Model  <br>Residual  <br>+<br>Total | 2. 8294e+10<br>203354041<br>2. 8498e+10 | 1 2.82<br>18 1129<br>  | 94e+10<br>7446.7<br><br>99e+09 |                | F( I, 18)<br>Prob > F<br>R-squared<br>Adj R-squared<br>Root MSE | = 2504.47<br>= 0.0000<br>= 0.9929<br>= 0.9925<br>= 3361.2 |
| cons                                | Coef.                                   | Std. Err.              | t                              | P> t           | [95% Conf.                                                      | [nterval]                                                 |
| y  <br>_cons                        | . 5139885<br>9937. 722                  | . 0102706<br>4527. 128 | 50. 04<br>2. 20                | 0.000<br>0.042 | . 4924108<br>426. 5786                                          | . 5355662<br>19448. 86                                    |

Stata では、何も指定しない場合、説明変数に自動的に定数項が含まれてしまいます。定数項を外して推計したい場合には nocons オプションを指定します。

reg cons y, nocons

(1) **ラグ付き変数の取り扱い(システム・ファンクションの利用)** 先述の推計式にラグ付き変数を含める場合、例えば

$$Cons_t = 定数項 + Y_t + Y_{t-1} + \varepsilon_t$$

とする場合、変数 Y の1期ラグ付き変数が必要となります。この時、システム変数[\_n-1]を利用するとよいでしょう。変数 Y<sub>t-1</sub>を、以下のように作成し、上式を推定することができます。

gen y1=y[\_n-1] reg cons y y1

### (2) 質的変数の取り扱い

回帰分析においては、質的な情報を扱う際には、その変数をそのまま用いるのではなく、ダミー変数と呼ばれる 0/1 の変数に置き換えて分析されることがしばしばあります。単純なダミー変数であれば、たとえば、性別の違いを分析に取り込みたい場合、以下のような手順を踏みます。データセットでは、性別は、sex(1のとき男性、2 は女性)となっているとすると、

gen d\_male=0
replace d\_male=1 if sex==1
reg wage age education d\_male

となります。d\_male は男性のとき1を示す変数です。この係数は、賃金の男女差を示すことになります。

なお、ダミー変数を作成する2つのコマンドは、以下の一文にまとめることもできます。

#### gen male=sex==1

連続変数からダミー変数を作成する場合は、まず、38 ページで説明した方法でカテゴリー変数 を作成します。次に、新たに作成したカテゴリー変数(ここでは、labor\_category としましょう。)をも とにダミー変数を作成するには、以下のようなコマンドを使います。

#### tabulate labor\_category, generate(empcat)

このコマンドにより、empcat1, empcat2, empcat3, empcat4 の4つの変数が生成されます。 37 ページの例と同じデータセットでダミー変数を作成してみましょう。

| . tab labor_categor | y,generate(em | pcat)   |        |
|---------------------|---------------|---------|--------|
| abor_categ  <br>ory | Freq.         | Percent | Cum.   |
| 99                  | 21            | 6. 29   | 6. 29  |
| 999                 | 191           | 57.19   | 63.47  |
| 1000                | 122           | 36. 53  | 100.00 |
| Total               | 334           | 100. 00 |        |

describe で確認すると、新しい変数が生成されていることがわかります。

. des

| Contains data  |         |             |             |                  |           |
|----------------|---------|-------------|-------------|------------------|-----------|
| obs:           | 334     |             |             |                  |           |
| vars:          | 6       |             |             |                  |           |
| size:          | 11, 022 | (99.9% of m | emory free) |                  |           |
|                | storage | display     | value       |                  |           |
| variable name  | type    | format      | label       | variable label   |           |
| id             | long    | %12. 0g     |             |                  |           |
| labor          | long    | %12.0g      |             |                  |           |
| labor_category | / float | %9. Og      |             |                  |           |
| empcat1        | byte    | %8.0g       |             | labor_category== | 99.0000   |
| empcat2        | byte    | %8.0g       |             | labor_category== | 999.0000  |
| empcat3        | byte    | %8.0g       |             | labor_category== | 1000.0000 |

新しい変数 empcat1, empcat2, empcat3 は 0、1で構成されていることがわかります。

| . sum empcat* |     |           |           |     |     |
|---------------|-----|-----------|-----------|-----|-----|
| Variable      | Obs | Mean      | Std. Dev. | Min | Max |
| empcat1       | 334 | . 0628743 | . 2431008 | 0   | 1   |
| empcat2       | 334 | . 5718563 | . 4955521 | 0   | 1   |
| empcat3       | 334 | . 3652695 | . 4822281 | 0   | 1   |

ここで、作成した企業規模ダミー変数を回帰分析で取り扱うには、

#### reg y x1 x2 x3 empcat1 empcat2

とします。ダミー変数は、すべて説明変数に挿入すると、定数項と多重共線性を引き起こしうまく 推定できないので、ここでは、empcat3を省いています。

Stata では、質的変数をダミー変数に自動的にダミー変数に置き換えて回帰分析を実行するコ マンドも備え付けてあります。ただし、この方法は、標準的な最小二乗法(regコマンドによる分析) にしか用いることが出来ませんので、注意が必要です。

(3)xi∶reg コマンド

基本式は以下のようになります。

### xi:reg 被説明変数 説明変数 i.カテゴリー変数

コマンドとして、xi:regを入力し、ダミー変数を作成したいカテゴリー変数の前にi.をつけます(iの 後にピリオドを忘れないよう注意)。

このコマンドは、質を表すカテゴリー変数に対して、自動的にカテゴリー毎のダミー変数を作成して くれるコマンドです。具体例として、以下の推計式を考えます。

賃金(wage)=定数項+年齢(age) +大学院卒ダミー(D[education=1]) +大学卒ダミー(D[education=2]) +短大卒ダミー(D[education=3]) +高卒ダミー(D[education=4])

ここで、education は、大学院卒なら1、大学卒なら2、短大卒なら3、高卒なら4を示すカテゴリー 変数であるとします。このカテゴリー毎にダミー変数を作って説明変数に加えたい場合、xi:reg を 用いると自動的にカテゴリー毎にダミー変数を作って推計してくれます。今回のケースであれば、 以下のようにコマンドを入力します。

### xi:reg wage age i.Education

推計結果は以下のように表示されます。

| i.education  | _leducation_1 | -4 (natu  | rally code | d; _Ieduca | tion_1 omitted)                        |
|--------------|---------------|-----------|------------|------------|----------------------------------------|
| Source       | SS            | df        | MS         |            | Number of obs = 54<br>F( 4 49) = 24 39 |
| Model        | 8. 92978039   | 4 2.2     | 324451     |            | Prob > F = 0.0000                      |
| Residual     | 4. 48509126   | 49 . 091  | 532475     |            | R-squared = 0.6657                     |
| +-           |               |           |            |            | Adj R-squared = 0.6384                 |
| Total        | 13. 4148716   | 53 . 253  | 110786     |            | Root MSE = $.30254$                    |
| wage         | Coef.         | Std. Err. | t          | P> t       | [95% Conf. Interval]                   |
| age          | . 0263066     | . 003927  | 6. 70      | 0.000      | . 0184149 . 0341982                    |
| _leducatio~2 | 5410875       | . 144381  | -3.75      | 0.000      | 831232 250943                          |
| _leducatio~3 | 7688748       | . 1875269 | -4.10      | 0.000      | -1. 145724 3920254                     |
| _leducatio~4 | 98413         | . 1953334 | -5.04      | 0.000      | –1. 376667 –. 5915928                  |
| _cons        | 6. 009725     | . 2079137 | 28.90      | 0.000      | 5. 591907 6. 427544                    |

この計算結果は、Edum1 は大学院卒=1、その他=0 のダミー変数(Edum2 は、大学卒=1、その 他=0 のダミー、以下続く)としたおときに、

reg wage age Edum1 Edum2 Edum3 Edum4

という回帰式と同じ結果をもたらします。

(4) areg コマンド

xi:regの類似のコマンドとして、aregコマンドがあります。xi:regコマンドを用いると、すべてのダミー 変数の係数が表示されますが、必ずしもダミー変数の係数が必要でない場合があります。その際、 aregコマンドを用いると、同じ計算を Speedy に実行してくれます。賃金を従業員の年齢、学歴で分 析する例を見ましょう。先の例を用いて推計する場合には、以下のようにコマンドを入力します。

#### areg 被説明変数 説明変数, absorb(カテゴリー変数名)

xi:reg コマンドとの違いは、自動的に作成されたダミー変数の個々の係数パラメータの値や t 値な どを推計結果として表示しない点です。 推計結果は以下のように表示されます。

| = 54                               | Number of obs                        |                         |                      |                                  |                                 |                          |
|------------------------------------|--------------------------------------|-------------------------|----------------------|----------------------------------|---------------------------------|--------------------------|
| = 44.87                            | F(1, 49)                             |                         |                      |                                  |                                 |                          |
| = 0.0000                           | Prob > F                             |                         |                      |                                  |                                 |                          |
| = 0.6657                           | R-squared                            |                         |                      |                                  |                                 |                          |
| = 0.6384                           | Adj R-squared                        |                         |                      |                                  |                                 |                          |
| = . 30254                          | Root MSE                             |                         |                      |                                  |                                 |                          |
|                                    |                                      |                         |                      |                                  |                                 |                          |
| Interval                           | [95% Conf.                           | P> t                    | t                    | Std. Err.                        | Coef.                           | wage                     |
| Interval                           | [95% Conf.<br>.0184149               | P> t <br>0.000          | t<br>6. 70           | Std. Err.<br>. 003927            | Coef.<br>. 0263066              | wage  <br>               |
| Interval<br>. 0341982<br>5. 749009 | [95% Conf.<br>. 0184149<br>5. 155804 | P> t <br>0.000<br>0.000 | t<br>6. 70<br>36. 94 | Std. Err.<br>.003927<br>.1475945 | Coef.<br>. 0263066<br>5. 452406 | wage  <br>age  <br>_cons |

推計結果の一番下に出ている F 検定の結果は、Edum1 ~ Edum4 のパラメータが同時に 0 になるかどうかを検定した結果を表しています。xi:regコマンドでは、F 検定が行われない代わりに、個別のダミー変数のパラメータや t 値が表示されています。説明変数として用いた age の係数パラメ ータが areg コマンドを用いた場合と同じになることを確認してください。

# 4-2. 離散選択モデル

Stata は個票データ処理に強みを発揮しますが、個票データの中には、アンケート調査のようなデータが使われている場合も見受けられます。本節では、そのようなデータを分析する離散選択モデル(質的変量モデル)を紹介します。

### (1)プロビット分析

質的データを被説明変数とするモデルの代表的な分析手法がプロビット分析です。プロビットモデ ル、ロジットモデルは回帰分析の考え方を応用した確率モデルに基づく分析手法であるため、本 章の冒頭で説明したとおり、コマンド名 被説明変数 説明変数の順に並べれば分析を行うことが できます。プロビット分析では、以下のコマンドを用いて分析します。

### probit 被説明変数 説明変数

以下では、50人の既婚女性の労働に関するデータを例にして説明します。 推計式は以下のようなものを想定します。

Work =  $C18 + AGE + AGE^2 + ED + HI$ 

変数の説明は以下のとおり。

 Work : 0=就労していない、1=就労している。

 C18 : 18歳未満の子供の数

 AGE : 年齢

 ED : 教育年数

 HI : 夫の収入

このモデルをプロビット分析する場合、以下のようにコマンドを入力します。

#### probit Work C18 Age Age2 ED HI

推計結果は以下のように表示されます。

| Iteration O:   | log likelih  | pod = -32.6   | 57091  |        |          |      |           |
|----------------|--------------|---------------|--------|--------|----------|------|-----------|
| Iteration 1:   | log likeliho | ood = −26. 47 | 4454   |        |          |      |           |
| Iteration 2:   | log likelih  | bod = −26. 22 | 9633   |        |          |      |           |
| Iteration 3:   | log likelih  | bod = −26. 22 | 27426  |        |          |      |           |
| Iteration 4:   | log likeliho | ood = −26.22  | 27426  |        |          |      |           |
|                |              |               |        |        |          |      |           |
| Probit estimat | es           |               |        | Numbe  | r of obs | =    | 50        |
|                |              |               |        | LR ch  | i2(5)    | =    | 12.89     |
|                |              |               |        | Prob   | > chi2   | =    | 0. 0245   |
| Log likelihood | = -26. 22742 | 6             |        | Pseud  | o R2     | =    | 0. 1972   |
|                |              |               |        |        |          |      |           |
| work           | Coef.        | Std. Err.     | Z      | P> z   | [95% C   | onf. | [nterval] |
| +<br>c18       | 4013713      | . 1897784     | -2. 11 | 0. 034 | 77333    | 02   | 0294125   |
| age            | . 1501527    | . 1375394     | 1.09   | 0. 275 | 11941    | 96   | . 419725  |
| age2           | 0023274      | . 0015347     | -1.52  | 0.129  | 00533    | 52   | . 0006805 |
| ed             | . 0536939    | . 0906034     | 0.59   | 0.553  | 12388    | 54   | . 2312732 |
| hi             | -4.96e-06    | . 0000102     | -0.48  | 0. 628 | 0000     | 25   | . 0000151 |
| _cons          | -1.478264    | 2.82501       | -0.52  | 0.601  | -7. 0151 | 82   | 4. 058654 |
|                |              |               |        |        |          |      |           |

通常の回帰分析では、係数は、説明変数が1増えると被説明変数がどの程度変化するか、という 限界効果として解釈できますが、probit モデルの場合、そのような解釈はできません。probit モ デルで限界効果を導くには、通常、多少の計算を必要としますが、Stataでは、dprobitコマンドをつかってプロビットモデルにおける限界効果を表示することができます。コマンドはプロビット分析と同じく以下のように書きます。

#### dprobit Work C18 Age Age2 ED HI

さらに、Stata では順序プロビットモデルも oprobit コマンドを使って推計することができます。順 序プロビットモデルの場合も同様に

#### oprobit Work C18 Age Age2 ED HI

と書くことになります。

(2) ロジット分析

プロビット分析では確率分布として正規分布を用いてきましたが、ロジスティック分布を用いるロジット分析も質的変量データの分析にしばしば用いられます。先ほどの例に対してロジット分析を行う場合、以下のようなコマンドを入力します。

#### logit Work C18 Age Age2 ED HI

推計結果は以下のように表示されます。

| teration O:                                                        | log likeliho                                                                     | pod = -32.6                                                                    | 7091                                              |                                                         |                                                       |                                               |                                                                                    |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|
| teration 1:                                                        | log likeliho                                                                     | pod = -26.42                                                                   | 2873                                              |                                                         |                                                       |                                               |                                                                                    |
| lteration 2:                                                       | log likeliho                                                                     | ood = −26.25                                                                   | 0084                                              |                                                         |                                                       |                                               |                                                                                    |
| teration 3:                                                        | log likeliho                                                                     | ood = −26.24                                                                   | 8375                                              |                                                         |                                                       |                                               |                                                                                    |
| Iteration 4:                                                       | log likeliho                                                                     | ood = −26.24                                                                   | 8374                                              |                                                         |                                                       |                                               |                                                                                    |
|                                                                    |                                                                                  |                                                                                |                                                   |                                                         |                                                       |                                               |                                                                                    |
| Logit estimate                                                     | S                                                                                |                                                                                |                                                   | Numbe                                                   | r of obs                                              | =                                             | 50                                                                                 |
|                                                                    |                                                                                  |                                                                                |                                                   | LR ch                                                   | i2(5)                                                 | =                                             | 12.85                                                                              |
|                                                                    |                                                                                  |                                                                                |                                                   | Prob                                                    | > chi2                                                | =                                             | 0. 0249                                                                            |
|                                                                    |                                                                                  |                                                                                |                                                   | 1100                                                    | ,                                                     |                                               |                                                                                    |
| Log likelihood                                                     | = -26. 248374                                                                    | 4                                                                              |                                                   | Pseud                                                   | o R2                                                  | =                                             | 0. 1966                                                                            |
| _og likelihood                                                     | = -26. 248374                                                                    | 4                                                                              |                                                   | Pseud                                                   | o R2                                                  | =                                             | 0. 1966                                                                            |
| _og likelihood<br>work                                             | = -26.248374<br>Coef.                                                            | 4<br>Std. Err.                                                                 | Z                                                 | Pseud<br>P> z                                           | o R2<br>                                              | =<br>Conf.                                    | 0. 1966<br><br>Interval]                                                           |
| _og likelihood<br>work  <br>t<br>                                  | = -26.248374<br>Coef.<br>6613577                                                 | 4<br>Std. Err.<br>. 3264931                                                    | z<br>-2. 03                                       | Pseud<br>P> z <br>0.043                                 | o R2<br>[95% (<br>                                    | =<br>Conf.<br>272                             | 0. 1966<br>Interval]<br>021443                                                     |
| _og likelihood<br>work  <br><br>c18  <br>age                       | = -26.248374<br>Coef.<br>6613577<br>.2636399                                     | 4<br>Std. Err.<br>. 3264931<br>. 2363032                                       | z<br>-2. 03<br>1. 12                              | Pseud<br>P> z <br>0. 043<br>0. 265                      | o R2<br>[95% (<br>                                    | =<br>Conf.<br><br>272<br>059                  | 0. 1966<br>Interval]<br>021443<br>. 7267857                                        |
| _og likelihood<br>work  <br><br>c18  <br>age  <br>age2             | = -26.248374<br>Coef.<br>6613577<br>.2636399<br>0040124                          | 4<br>Std. Err.<br>. 3264931<br>. 2363032<br>. 002665                           | z<br>-2. 03<br>1. 12<br>-1. 51                    | P> z <br>0. 043<br>0. 265<br>0. 132                     | o R2<br>[95% (<br>                                    | =<br>Conf.<br>272<br>259<br>357               | 0. 1966<br>Interval]<br>021443<br>. 7267857<br>. 0012109                           |
| _og likelihood<br>work  <br>c18  <br>age  <br>age2  <br>ed         | = -26. 248374<br>Coef.<br>6613577<br>. 2636399<br>0040124<br>. 0812957           | 4<br>Std. Err.<br>. 3264931<br>. 2363032<br>. 002665<br>. 1520127              | z<br>-2. 03<br>1. 12<br>-1. 51<br>0. 53           | P> z <br>0. 043<br>0. 265<br>0. 132<br>0. 593           | o R2<br>[95% (<br>-1. 3012<br>1995(<br>00923<br>21664 | =<br>Conf.<br>272<br>259<br>357<br>436        | 0. 1966<br>Interval]<br>021443<br>. 7267857<br>. 0012109<br>. 3792351              |
| Log likelihood<br>work  <br>c18  <br>age  <br>age2  <br>ed  <br>hi | = -26.248374<br>Coef.<br>6613577<br>.2636399<br>0040124<br>.0812957<br>-8.43e-06 | 4<br>Std. Err.<br>. 3264931<br>. 2363032<br>. 002665<br>. 1520127<br>. 0000175 | z<br>-2. 03<br>1. 12<br>-1. 51<br>0. 53<br>-0. 48 | P> z <br>0. 043<br>0. 265<br>0. 132<br>0. 593<br>0. 629 | o R2<br>[95% (<br>                                    | =<br>Conf.<br>272<br>059<br>357<br>436<br>427 | 0. 1966<br>Interval]<br>021443<br>. 7267857<br>. 0012109<br>. 3792351<br>. 0000258 |

# 4-3. 回帰分析結果の整理(outreg コマンド)

複数の回帰分析結果を journal スタイルでまとめるのは、結構面倒な作業です。こんなとき、 outreg コマンドを用いると便利です。

outregコマンドは、adoファイルで提供されています。まず、以下の WEB ページから、outreg.ado ファイルをダウンロードしてください。

http://ideas.repec.org/c/boc/bocode/s375201.html

※ internet explorer にプログラムが表示されたら、そのページを「テキスト形式」で「名前をつけて 保存」してください。さらに、拡張子を".ado"に変更してください。

ダウンロードしたファイルは、stataをインストールしたときに生成される"ado"フォルダーの下の"personal"フォルダーに移してください。

"ado"ファイルの使い方は、User's Guideも参考にしてください。

**reg** コマンドの実行後に、outreg using filename.doc と分析結果の出力先を指定すると、 filename.doc というファイルが生成さます。

次の例では、県民経済計算(経済企画庁・平成2年)の47都道府県の貯蓄額(save)と所得 (income)を使った回帰分析の結果をoutregコマンドによって、save.doc ファイルに出力しています。

#### \*回帰式①

. reg save income

| 00                     | ar                                                                   | MO                                                                                                                                                           |                                                                                                                                                                                                                                      | ľ                                                     | Number of o                                           | bs =    | 47                   |
|------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------|----------------------|
|                        |                                                                      |                                                                                                                                                              |                                                                                                                                                                                                                                      | I                                                     | F( 1, 4                                               | 5) =    | 71.47                |
| 109948399              | 1                                                                    | 1099483                                                                                                                                                      | 99                                                                                                                                                                                                                                   | I                                                     | Prob > F                                              | =       | 0.0000               |
| 9224547.9              | 45                                                                   | 1538323.                                                                                                                                                     | 29                                                                                                                                                                                                                                   | I                                                     | R-squared                                             | =       | 0.6136               |
|                        |                                                                      |                                                                                                                                                              |                                                                                                                                                                                                                                      | I                                                     | Adj R-squar                                           | ed =    | 0.6051               |
| 179172947              | 46                                                                   | 3895064.                                                                                                                                                     | 06                                                                                                                                                                                                                                   | Η                                                     | Root MSE                                              | =       | 1240.3               |
|                        |                                                                      |                                                                                                                                                              |                                                                                                                                                                                                                                      |                                                       |                                                       |         |                      |
| Coef.                  | Std. E                                                               | Err.                                                                                                                                                         | t P>                                                                                                                                                                                                                                 | t                                                     | [95% Con                                              | f. In   | terval]              |
| 3. 756302<br>3866. 052 | . 44431<br>1116. 1                                                   | 138 8<br>157 -3                                                                                                                                              | 8. 45 0. 0<br>8. 46 0. 0                                                                                                                                                                                                             | 000<br>001                                            | 2. 861408<br>-6114. 107                               | 4<br>-1 | . 651196<br>617. 997 |
|                        | 109948399<br>9224547.9<br>179172947<br>Coef.<br>3.756302<br>3866.052 | 109948399       1         9224547.9       45         179172947       46         Coef.       Std.         3.756302       .44431         3866.052       1116.1 | 109948399       1       1099483         .9224547.9       45       1538323.         179172947       46       3895064.         Coef.       Std. Err.         3.756302       .4443138       8         :3866.052       1116.157       -3 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |         |                      |

. outreg using save.doc

#### \*回帰式②

. reg save

| Source   | SS        | df    | MS       |         | Nu  | mber of   | obs = | = 47      |
|----------|-----------|-------|----------|---------|-----|-----------|-------|-----------|
|          | +         |       |          |         | F ( | (0,       | 46) = | 0.00      |
| Model    | 0         | 0     |          |         | Pr  | ob > F    | =     | : .       |
| Residual | 179172947 | 46    | 3895064. | 06      | R-  | squared   | =     | 0.0000    |
|          | +         |       |          |         | Ac  | lj R-squa | red = | 0.0000    |
| Total    | 179172947 | 46    | 3895064. | 06      | Ro  | ot MSE    | =     | 1973.6    |
|          |           |       |          |         |     |           |       |           |
|          |           |       |          |         |     |           |       |           |
| save     | Coef.     | Std.  | Err.     | t P>    | • t | [95% Co   | nf. I | [nterval] |
|          |           |       |          |         |     |           |       |           |
| _cons    | 5445.34   | 287.8 | 18       | 3.92 0. | 000 | 4865.87   | 2     | 6024.809  |

. outreg using save.doc,append

こうして生成された save.doc ファイルの中身は以下のとおりです。

(2)(1)save save income 3.756 (8.45)\*\* Constant -3, 866. 052 5, 445. 340 (3.46)\*\* (18.92)\*\* Observations 47 470.61 0.00 R-squared Absolute value of t statistics in parentheses \* significant at 5%; \*\* significant at 1%

これをコピーしてEXCELに貼り付けると、以下のような journal フォーマットの表が得られます。

|              | (1)         | (2)         |
|--------------|-------------|-------------|
|              | save        | save        |
| income       | 3. 756      |             |
|              | (8. 45)**   |             |
| Constant     | -3, 866. 05 | 5, 445. 34  |
|              | (3. 46) **  | (18. 92) ** |
| Observations | 47          | 47          |
| R-squared    | 0.61        | 0           |

Absolute value of t statistics in parentheses \* significant at 5%; \*\* significant at 1%

# 第5章 パネルデータによる分析

# 5-1. パネルデータとは

パネルデータとは、同一の主体/個体(個人、家計、企業など)を複数の時点について観測したものです。STATA では、個体を認識する変数を行方向に並べ、個体ごとの同一変数の異時点の観 測値が列方向・行方向のどちらに並ぶかにより、データの構成が大きく異なります。

LONG 形式:複数の個体のデータの集合が縦方向に接続されたデータ WIDE 形式:複数の個体のデータ系列が横方向に接続されたデータ

| fid  | year | labor | slsprofit | head-q |
|------|------|-------|-----------|--------|
| 6501 | 1994 | 80493 | . 0173707 | 13     |
| 6501 | 1995 | 78368 | . 0214952 | 13     |
| 6501 | 1996 | 75590 | . 031215  | 13     |
| 6501 | 1997 | 72193 | . 0195598 | 13     |
| 6501 | 1998 | 70375 | . 0042226 | 13     |
| 6501 | 1999 | 66046 | 0303931   | 13     |
| 6501 | 2000 | 58739 | . 0084272 | 13     |
| 6501 | 2001 | 54017 | . 0139593 | 13     |
| 6501 | 2002 | 48590 | 0231846   | 13     |
| 6502 | 1994 | 74558 | . 016504  | 14     |
| 6502 | 1995 | 73463 | . 021515  | 14     |
| 6502 | 1996 | 71170 | . 0326982 | 14     |
| 6502 | 1997 | 68441 | . 0253295 | 14     |
|      | (以下省 | (略)   |           |        |

LONG 形式のデータ(例)

WIDE 形式のデータ(例)

| fid  | labor 1994 | l abor 1995 | l abor 1996 | l abor 1997 | labor |
|------|------------|-------------|-------------|-------------|-------|
| 6501 | 80493      | 8368        | 5590        | 2193        |       |
| 6502 | 74558      | 3463        | 1170        | 8441        |       |
| 6503 | 49842      | 8421        | 7752        | 7372        |       |
| 6504 | 14094      | 3794        | 3202        | 2870        |       |

### Long 形式のデータ作成

同一個体を追跡調査している調査統計に対し、同一変数に関する一連の調査結果であっても、 時点ごとに個別データシートが存在する場合があります。このような時、append コマンドによりパ ネルデータセットを構築することができます。ただし、各データシートにおいて、時点を識別する変 数が各シートに含まれている必要があるのに注意が必要です。append コマンドの扱いは『2-1. データの縦方向の結合』をご参照ください。

#### Wide 形式のデータ作成

Wide 形式では、各個体の識別変数に対応して、全変数が横に並ぶことになります。そのため、 新たなデータセットの追加などには、merge コマンドにより対応することができます。merge コマン ドの扱いは『2-2. データの横方向の結合』を参照してください。

#### Long 形式とWide 形式の特性

パネル計量分析を行うには、データセットが必ず Long 形式となっている必要があります。ただし、 データの扱いは、Wide 形式である方が便利な時もあります。例えば、GDP 主要項目の GDP 成長率 への寄与度を算出したい場合、異なる変数の異なる時点を抽出して計算する必要があります。

| id   | year | GDP  | С | Ι |   |  |
|------|------|------|---|---|---|--|
| 0001 | :    | (省略) | : | : | : |  |
| 0001 | 1999 | a    | b | с | : |  |
| 0001 | 2000 | d    | e | f | : |  |
| 0002 | :    | (省略) | : | : | : |  |
| 0002 | 1995 | g    | h | i | : |  |
| 0002 | 2000 | j    | k | 1 | : |  |
| (以下  | 省略)  |      |   |   |   |  |

ここで、2000年のC(民間最終消費支出)のGDP成長率への寄与度を測るとき、4-1.(1)のシステ ムファンクション[\_n-1]を用いて、

gen new\_var\_name ==  $(C - C[_n-1])/GDP[_n-1]$  if year==2000

と計算式を指定することができます。この時、固体 0001 については、

2000 年消費の GDP 成長率寄与度= (e - b)÷ a

として正しく計算されることになります。しかし個体 0002 は 1996 年から 1999 年のデータが欠損し ていることから、(k-h)/g が計算されます。これは対 1995 年変化率を算出していることになり、本 来示されるべき値(欠損値".")を得ることができません。後述の5-1.(3)で紹介するデータ・オ ペレータ・ファンクションにより個体別に正しく計算することが可能ではありますが、複雑な計算式 の場合や、全期間に対して時系列の寄与度データが必要なのではなく、ある一時点の寄与度の み抽出した場合などは、データセットが Long 形式ではなく、Wide 形式となっていると便利です(デ ータ形式の変換は、5-1.(1)をご参照ください)。

| id   |     | GDP1999 | GDP2000 | <br>C1999 | C2000 |  |
|------|-----|---------|---------|-----------|-------|--|
| 0001 | :   | a       | b       | <br>c     | d     |  |
| 0002 | :   | e       | f       | <br>g     | h     |  |
| (以下  | 省略) |         |         |           |       |  |

### 上のようにデータセットが Wide 形式の時、

gen new\_var\_name = ( C2000 — C1999)/GDP1999 で、個体別に 2000 年の正しい「消費の GDP 成長率寄与度」を計れることとなります。

balance パネルとunbalance パネル

balanced panel とは、使用するデータセットの各個体の変数が全期間揃っている(欠損値を含

まない)パネルデータセットであることを言います。反対に、ある個体のある時点のデータが欠損している場合は unbalanced panel と言います。

#### (1) パネルデータ形式を変換する

パネルデータの『LONG 形式 ⇔ WIDE 形式 』変換を reshape コマンドにより行うことができ ます。「5-1. パネルデータとは」のデータ形式別のパネルデータセット例を用いて見てみましょ う。

【long 形式 ⇒ wide 形式】の変換

reshape wide <u>labor slsprofit</u>, i(fid) j(year) 変換対象の変数

wide に続いて変換したい変数名を記入します。個体ごとに時間を通じて一定の変数(たとえば、 表の変数のうち、"head-q"のように個体ごとにみると、一定になっている変数)は記入する必要 はありません。ただし、個体により、時間により異なる値をもつ変数がデータセットに含まれている (表の labor や slsprofit のような変数)にも関わらず、変換対象の変数として記述から漏れてい る時、データ形式変換は行われずエラー表示が返されます。コマンドライン中の wide 以下には time variant(時間について可変)な変数は全て記入するようにしましょう。

変換の軸となる個体を表わす変数 fid と、時間を表わす変数 year の全データが、一対一の 関係であれば問題なく変換されます。誤植などにより重複してデータが存在する場合(例えば fid 番号 5948 の 1999 年のデータが1つ以上存在する場合など)は変換されず、

year not unique within fid; there are multiple observations at the same year within fid. Type "reshape error" for a listing of the problem observations. r(9);

のようなエラーが表示されます。このような場合の対処方法は、第5章の補論を参照してください。 なお、unbalanced panel である場合、データ変換に特に問題は生じません。欠損しているデータ については「.」の欠損を表わす記述が自動的に置き換わります。

### 【wide 形式⇒long 形式】の変換

### reshape long labor slsprofit, i(fid) j(year)

変換するデータセットには、変換対称として指定する変数名(ここでは labor, slsprofit)と、その変数名に数値が続く変数(ここでは labor1994, labor11995,…)が存在する必要があります。 指定変数名に続く数値が、j() で指定した時間軸変数の値として変換されます。全ての変数が 正しく存在する時(共通した変数名があり、その各変数名に共通した数値系列が続いている場合)、 細かい指定を省略し reshape long と記入するだけで、データ形式が変換されます。 (2) パネルデータとしての認証

パネルデータによる分析を行う際、STATA にデータセットがパネルデータであるという情報を伝える必要があります。

tsset var1 var2

「var1」には主体を表わす変数名を、「var2」には時間軸を表わす変数名を記述します。

| . tsset fid year |                     |
|------------------|---------------------|
| panel variable:  | fid, 1909 to 359059 |
| time variable:   | year, 1994 to 2002  |

パネルデータであることを伝えたら、パネルデータの形状を xtdes コマンドにより確認できます。

| . iis fid  |            |           |           |         |              |        |              |         |
|------------|------------|-----------|-----------|---------|--------------|--------|--------------|---------|
| . tis year |            |           |           |         |              |        |              |         |
| . xtdes    |            |           |           |         |              |        | 1            |         |
|            |            |           |           |         |              |        | $\downarrow$ |         |
| fid:       | 1909, 199  | 3,, 3     | 359059    |         |              | n =    | :            | 334     |
| year:      | 1994, 199  | 5,, 2     | 2002      |         |              | T =    |              | 9       |
|            | Delta(yea  | r) = 1; ( | (2002–199 | 4)+1 =  | 9            |        |              |         |
|            | (fid*year  | does not  | : uniquel | y ident | ify observat | cions) |              |         |
|            |            |           |           |         |              |        |              |         |
| Distributi | on of T_i: | min       | 5%        | 25%     | 50%          | 75%    | 95%          | max     |
|            |            | 1         | 7         | 9       | 9            | 9      | 9            | 27      |
|            |            |           |           |         | 1            |        |              |         |
| Freq.      | Percent    | Cum.      | Patter    | n       | 2            | )      |              |         |
|            |            | 4         |           |         | <b>€</b> →   |        |              |         |
| 256        | 76.35      | 76.35     | 111111    | 111     | ←94-02 まで    | 連続してい  | いる標本が        | が 256 社 |
| 27         | 8.08       | 84.43     | . 11111   | 111     |              |        |              |         |
| 16         | 4. 79      | 89. 22    | 111111    | 11.     |              |        |              |         |
| 12         | 3.59       | 92.81     | 1111      | 111     |              |        |              |         |
| 10         | 2.99       | 95.81     | 111       | 111     |              |        |              |         |
| 3          | 0.90       | 96.71     | 111111    | 1       |              |        |              |         |
| 1          | 0.30       | 97.60     |           | 1       |              |        |              |         |
| 1          | 0.30       | 97.90     | 11        | 111     |              |        |              |         |
| 7          | 2. 10      | 100.00    | (other    | pattern | s)           |        |              |         |
| 334        | 100.00     | +         | XXXXXX    | XXX     |              |        |              |         |

 ここには、個体識別変数(fid)が 1909~359059 までの値の 334 社のデータが、1994~2002 年の 9 時点分あることを示しています。また、変数 fid と year が一対一の関係でないことも (fid\*year does not uniquely identify observations)で示しています。そのため、デー タの重複を修正しなくては、Wide 形式に変換することも回帰分析することもできないことが分 かります。

- ② ここには、データの欠損に関する情報が得られます。95%のデータは9時点のデータがあることを示していますが、5%のデータは7時点のデータであることが示されています。よって、このデータセットは unbalanced panel であることが分かります。
- ③ ②の情報を、より詳しく示しています。256 サンプルはデータは全期間連続しており、27 サンプ ルは1期目のデータが欠損していることを示しています。Patternの列にしめされる「1」はデー タ存在していることを示し、「.」はデータが存在していないことを示しています。

### (3) データ・オペレータ・ファンクション

tsset の設定により STATA が時系列の概念を認識できるようになると、遅延演算子などのオペレ ーション・ファンクションを利用することが可能となります。

I. ファンクション 時系列方向のデータを含むデータを扱う際、1. を変数の前に付けるこ

とでラグ付変数として認識されます。

```
labor\equiv labor(t)1. labor\equiv labor(t-1)12. labor\equiv labor(t-2)::
```

|f. ファンクション | f. を変数の前に付けることで一期前の値を参照します。

```
f. labor \equiv labor (t+1)
f2. labor \equiv labor (t+2)
: :
```

│d. ファンクション│d. を変数の前に付けると、前期値との差分変数として認識します。

d. labor  $\equiv$  labor(t)-labor(t-1)

これらのオペレーション・ファンクションは、個体ごとの時系列を参照して算出されます。その点が 変数システムファンクション[\_n-1]などと異なり、パネルデータを扱う際の極めて利便性の高いフ ァンクションと言えます。以下に、1.ファンクションとシステムファンクション[\_n-1]との違いを例示 しましょう。

| . tsset | fid year  | r        |       |       |       |                 |
|---------|-----------|----------|-------|-------|-------|-----------------|
| . gen t | est1=1.1a | abor     |       |       |       |                 |
| . gen t | est2=labo | or[_n-1] | ]     |       |       |                 |
| . list  |           |          |       |       |       |                 |
| +       |           |          |       |       |       | +               |
|         | fid       | year     | labor | test1 | test2 |                 |
|         |           |          |       |       |       |                 |
| 1.      | 1909      | 1995     | 535   |       |       |                 |
| 2.      | 1909      | 1996     | 529   | 535   | 535   |                 |
|         | (省日       | 略)       |       |       |       |                 |
| 6.      | 1909      | 2000     | 470   | 509   | 509   |                 |
| 7.      | 1993      | 1994     | 922   |       | 470   | ←test2 では個体変数別に |
| 8.      | 1993      | 1995     | 929   | 922   | 922   | データが作成がされない     |
|         | (省日       | 略)       |       |       |       | 様子がわかります。       |
| 15.     | 1993      | 2002     | 773   | 799   | 799   |                 |
| 16.     | 4062      | 1994     | 1450  |       | 773   |                 |
| 17.     | 4062      | 1995     | 1921  | 1450  | 1450  |                 |
|         | (以        | 下省略)     |       |       |       |                 |

データ・オペレータ・ファンクションにより Long 形式でもデータの扱いが容易になりますが、5-2. で紹介する回帰分析に、オペレータ・ファンクション付の変数を直接組み込むことはできません。 回帰分析でラグ付変数などを使用したい場合は、まず一度 gen コマンドで新たな変数を作成し、 その新変数を使って回帰分析を試みましょう。

# 5-2.パネルデータによる回帰分析

パネル計量分析を行う際、データの特性(i:個体を表わす変数、t:時間を表わす変数)に関する 情報が必要です。5-1.(2)で指定した tsset から変更がなければ、回帰分析を行うコマンドラ インごとに i や tを指定する必要はありません。ただし、データを加工したことで、新たな個体認識 変数や時間変数が作成された場合などは、データ特性が変更された情報を STATA に伝えなけれ ばなりません。

## iis varname

tis varname

iis コマンドは新たな個体認識の変数の指定、tis は新たな時間変数の指定を行います。この時、 tsset で伝えていた情報は残されないため、元の特性を用いて分析し直したい時には、特性変数 の再指定をする必要があります。

以下では、実際に回帰分析を行う手順を概説します。ここでは、説明変数に強外生性を仮定し、O LSにより一致推定量を得られるものとして固定効果モデルと変量効果モデルを紹介します。説明 変数に内生変数が含まれる場合などや、ダイナミックなモデルを想定する際に操作変数法 (xtivreg)などによる推定を行うことがありますが、詳しくは各自マニュアルをご参照ください。な お、パネル分析におけるGMM推定量や、より高度な推定量などは、STATA にプログラムが内蔵さ れていなくても、研究者などが個人的に作成したプログラムを一般公開している場合もありますの で、すぐに諦めずに一度

< http://www.stata.com/links/resources2.html >で検索してみることをお勧めします。

(1)線形回帰分析(変量効果モデル、固定効果モデルなど)

xtreg depvar indepvar, xx

「depvar」部分に被説明変数を、「indepvar」部分に被説明変数(複数記入可)を記入します。 「,xx」の xx 部分には、以下の得たい推定量を記入します。無記入の場合は変量効果モデル re が推定されます。

- be between-effects estimator
- fe fixed-effects estimator
- re GLS random-effects estimator

(2)ハウスマン検定

STATA には、固定効果モデルと変量効果モデルの推定量を比較して、個体効果が説明変数と相関をもつかどうかのハウスマン検定を以下の手順で行うことができます。

xtreg depvar indepvar, fe est store <u>fixed</u> xtreg depvar indepvar, re hausman fixed .

なお、下線部分には適当な変数名を指定します。

# (3) 非線形回帰分析

ここでは、非線形回帰モデルとして、プロビット、ロジットとトービット・モデルのコマンドだけ簡単に ご紹介します。オプションなどの詳しい解説はここでは省略しますので、必要に応じてマニュアル をご参照ください。

プロビット・モデル

xtprobit depvar indepvar, i(id)

ロジット・モデル

xtlogit depvar indepvar, i(id)

トービット・モデル

xttobit depvar indepvar , i(id) ll(#)

ここで 11(#)は左に切断されたデータを意味し、# に切断点を記入します。右に切断されたデータの場合は ul(#)を記入します。右にも左にも切断されていたデータを推定するには、11(#)と ul(#)を両方記入しましょう。

# 第5章 補論 重複データの対処法

下記のデータのように、1991 年の id=5 のデータのように一つのデータセットの中に 2 つのデー タが入っている場合を考えて見ましょう。

| id | year | value |
|----|------|-------|
| 1  | 1990 | 100   |
| 2  | 1990 | 100   |
| 3  | 1990 | 100   |
| 4  | 1990 | 100   |
| 5  | 1990 | 100   |
| 1  | 1991 | 110   |
| 2  | 1991 | 111   |
| 3  | 1991 | 112   |
| 4  | 1991 | 113   |
| 5  | 1991 | 114   |
| 5  | 1991 | 114   |

# このデータを無理やり、パネルデータとして認識させようとしても、

. tsset id year repeated time values within panel

というメッセージが返ってきます。また、reshape で wide データに変換しようとすると、

. reshape wide value,i(id) j(year) (note: j = 1990 1991) year not unique within id; there are multiple observations at the same year within id. Type "reshape error" for a listing of the problem observations. r(9);

# というエラーメッセージが返ってきます。ここで、reshape error と入力すると、id=5 が重複しているこ とがわかります。

. reshape error (note: j = 1990 1991) i (id) indicates the top-level grouping such as subject id. j (year) indicates the subgrouping such as time. The data are in the long form; j should be unique within i. There are multiple observations on the same year within id. The following 2 out of 11 observations have repeated year values: +-----+ | id year | |------| 10. | 5 1991 | 11. | 5 1991 | +-----+ (data now sorted by id year)

こういった問題への対処法としては、EXCEL 等で作成した元のデータセットに戻って作成方法に 間違いがなかったかを調べるか、duplicatees コマンドを用いて重複しているデータの片方を強制 的に削除してしまう方法が考えられます。

duplicates コマンドは、report オプションをつけると、重複状況を表示させることができます。"copies"1となっている行は重複のないデータの数、2は重複するペアの数が表示されます。

| . duplicate                    | s report id year                |           |  |
|--------------------------------|---------------------------------|-----------|--|
| Duplicates in terms of id year |                                 |           |  |
|                                |                                 |           |  |
| aopias                         | chaervetions                    | a         |  |
| copres                         |                                 | surpius   |  |
|                                | +9                              | 0 surpius |  |
|                                | 005ervations<br> <br>  9<br>  2 | 0<br>1    |  |

重複しているペアの片方を削除するには、drop オプションを使います。

. duplicates drop id year, force

duplicates in terms of id year

(1 observation deleted)

このコマンドの後に、データセットを browse すると、次の表のように重複データが強制的に削除差 入れていることがわかります。

| id | year | value |
|----|------|-------|
| 1  | 1990 | 100   |
| 1  | 1991 | 110   |
| 2  | 1990 | 100   |
| 2  | 1991 | 111   |
| 3  | 1990 | 100   |
| 3  | 1991 | 112   |
| 4  | 1990 | 100   |
| 4  | 1991 | 113   |
| 5  | 1990 | 100   |
| 5  | 1991 | 114   |

# 第6章 サバイバル分析

# 6-1. サバイバル分析とは

サバイバル分析とは、誤解を恐れずに言えば、分析上、興味のあるイベントの発生の有無を表 す変数と、そのイベントが発生するまでの時間を表す変数との関係を分析する手法です。この手 法は、生物学の分野で応用・開発が進められたものですが、近年では事業所の存続・閉鎖に関す る分析など、経済学へも応用されています。同様の研究テーマに用いられるその他の手法として は、存続・退出の2者択一によるプロビット・モデルが挙げられますが、プロビット・モデルを用いた 分析の場合、いつ参入したかといった過去の履歴が考慮できないという欠点があり、その欠点を 補う目的でサバイバル分析が用いられます。

# 6-2. サバイバルデータとしての認証

STATA においてサバイバル分析を行う場合には、パネル分析と同様、まずサバイバル分析を行うことを STATA に認識させる必要があります。サバイバル分析に用いられるデータには、大きく分けて以下の二つがあります。

| Survival-time data | a:観察された個体の ID、期間を表す変数、failure or censoringを示す        |
|--------------------|------------------------------------------------------|
|                    | 変数の三つの要素が入ったデータ。                                     |
| Count-time data    | :Survival-time data の集計版。failure or censoring を示す変数、 |
|                    | 時点 t における failure or censoring であった個体総数の二つの要         |
|                    | 素が入ったデータ。                                            |

Survival-time data を用いる場合は stset コマンド、Count-time data を用いる場合は ctset コマンドを用いて STATA に認識させます。

stset [timevar], fail(failvar)
ctset [timevar], fail(failvar)

[timevar]には時間を表す変数を、(failvar)には分析上興味があるイベントを表すダミー変数 (failure=1, cencsoring=0)を、それぞれ指定します。サバイバル分析では、(failvar)で指定した変数を非説明変数として認識します。

stset を使用した場合には、様々なオプションが利用可能です。例えば、origin(time originvar)と指定すると、イベントが発生するまでの時間(t)をt=timevar-originvar として計算してくれます。

origin の他にも様々なオプションがありますが、ここでは説明を省略します。各自 STATA マニュ アル(Version. 8 なら、"Survival analysis and epidemiological tables")を参照してください。

| id     | year | died | closeyear o | rigin | slsprofit | llabor    | wage_f    |  |
|--------|------|------|-------------|-------|-----------|-----------|-----------|--|
| 1      | 1996 | 0    | 2002 1      | 925   | 0.0131807 | 9. 488124 | 7.327905  |  |
| 1      | 2000 | 0    | 2002 1      | 925   | 0.0029958 | 9. 206634 | 7.818227  |  |
| 2      | 1996 | 0    | 2002 1      | 961   | 0.0131807 | 9. 488124 | 7.327905  |  |
| 2      | 2000 | 0    | 2002 1      | 961   | 0.0029958 | 9. 206634 | 7.818227  |  |
| (省略)   |      |      |             |       |           |           |           |  |
| 110    | 1996 | 0    | 2001 1      | 970   | 0.0428923 | 8.050385  | 7.597767  |  |
| 110    | 2000 | 1    | 2001 1      | 970   | 0.0047661 | 7.959975  | 8. 029329 |  |
| (省略)   |      |      |             |       |           |           |           |  |
| 339    | 1996 | 0    | 2001 1      | 969   | 0.0264739 | 7. 187657 | 6. 518518 |  |
| 339    | 2000 | 1    | 2001 1      | 969   | 0.0156754 | 7. 25347  | 6.512385  |  |
| (以下省略) |      |      |             |       |           |           |           |  |

ここで、企業倒産をイベント(failvar)とする以下のような Survival-time data を考えてみましょう。

「id」は企業 id、「year」はデータ年次、「died」は企業倒産の有無を表すダミー変数(倒産=1)、 「closeyear」は倒産年次、「origin」は設立年次、「slsprofit」は売上高利益率、「llabor」は従 業員数の対数値、「wage\_f」は平均賃金の対数値です。

この Survival-time data を STATA に認識させるため、以下のように指定します。

stset closeyear, fail(died) origin(time origin)

オプションで origin(time origin)と指定しているので、企業倒産と企業の生存年数 (closeyear-origin)の関係を分析することを STATA に認識させたことになります。

# 6-3. サバイバル分析

分析上、興味のあるイベントが少なくとも t 期間以降に発生する確率を示す関数を、生存関数 (あるいはハザード関数)と呼びます。サバイバル分析では、ハザード率(次の瞬間に分析上興味 があるイベントが起こる確率)を被説明変数、ハザード率に影響を与える変数を説明変数とし、こ の生存関数(あるいはハザード関数)がどのような要因によって変化するかを推定するものです。 STATA では複数の推定方法に対してコマンドが用意されています。

(1)Cox の比例ハザードモデル(Cox Proportional Hazard Models)

詳しい説明は他の教科書に委ねますが、ハザード関数にはベースライン・ハザードと呼ばれる 様々な要因を取り除いた場合の全サンプルに共通するハザード率が含まれます。Cox は、ベース ライン・ハザードの分布が推定に影響しないような推定方法を考案しました。そのため、ベースライ ン・ハザードの分布の形を特定せずにハザード関数を推定するモデルを Cox の比例ハザードモデ ル(Cox Proportional Hazard Models)と呼びます。

Cox の比例ハザードモデルを推定する場合には、以下のコマンドを用います。

#### stcox 説明変数,オプション

前述のとおり、stset コマンドで被説明変数(failvar)を認識させていますので、ここでは被説明

変数を指定する必要はありません。

先ほどの企業倒産のデータを使って、実際に Cox モデルを推定してみましょう。推定を行うため に、以下のようにコマンドを入力します。

**stcox** slsprofi llabor wage\_f

推定の結果は以下のように出力されます。

|                                                                                       | lure _d: die                                                                              | ed                                                                |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-------------------------------------------------|-----------------------------------------------------------------|--------------------------|---------------------------------------------------------|--|--|--|--|--|--|
| analysis                                                                              | time _t: (c                                                                               | loseyear-ori                                                      | gin)                            |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
|                                                                                       | origin: tir                                                                               | ne origin                                                         |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
|                                                                                       |                                                                                           |                                                                   |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Iteration 0:                                                                          | log likel                                                                                 | ihood = -626                                                      | . 87893                         |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Iteration 1:                                                                          | log likel                                                                                 | ihood = -623                                                      | . 83754                         |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Iteration 2:                                                                          | log likel                                                                                 | ihood = -603                                                      |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Iteration 3:                                                                          | log likel                                                                                 | ihood = -602                                                      |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Iteration 4:                                                                          | log likel                                                                                 | ihood = -602                                                      |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| lteration 5: log likelihood = -602.36512                                              |                                                                                           |                                                                   |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Refining est                                                                          | imates:                                                                                   |                                                                   |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| lteration 0: log likelihood = -602.36512                                              |                                                                                           |                                                                   |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
|                                                                                       |                                                                                           |                                                                   |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Cox regressi                                                                          | on Breslow                                                                                | w method for                                                      | ties                            |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| No of out is                                                                          | -+                                                                                        | 2020                                                              |                                 | Ν                                               | where of the                                                    | _                        | 2020                                                    |  |  |  |  |  |  |
| NO. OI SUDJE                                                                          | CLS =                                                                                     | 2039                                                              |                                 | NU                                              | mber of obs                                                     | -                        | 2039                                                    |  |  |  |  |  |  |
| NO. OF TATIL                                                                          | res =                                                                                     | 90                                                                |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Time of rick                                                                          | _                                                                                         | 62210                                                             |                                 |                                                 |                                                                 |                          |                                                         |  |  |  |  |  |  |
| Time at risk                                                                          | =                                                                                         | 63310                                                             |                                 | חו                                              | abid(2)                                                         | _                        | 40.02                                                   |  |  |  |  |  |  |
| Time at risk                                                                          | = 600                                                                                     | 63310                                                             |                                 | LR                                              | chi2(3)                                                         | =                        | 49.03                                                   |  |  |  |  |  |  |
| Time at risk<br>Log likeliho                                                          | =<br>nod = -602.                                                                          | 63310<br>36512                                                    |                                 | LR<br>Pr                                        | chi2(3)<br>ob > chi2                                            | =<br>=                   | 49. 03<br>0. 0000                                       |  |  |  |  |  |  |
| Time at risk<br>Log likeliho                                                          | =<br>nod = −602.                                                                          | 63310<br>36512                                                    |                                 | LR<br>Pr                                        | chi2(3)<br>ob > chi2                                            | =<br>=                   | 49. 03<br>0. 0000                                       |  |  |  |  |  |  |
| Time at risk<br>Log likeliho<br>t                                                     | roo = -602.<br>                                                                           | 63310<br>36512<br>Std. Err.                                       | Z                               | LR<br>Pr<br>P> z                                | <pre>chi2(3) ob &gt; chi2[95% Conf.</pre>                       | =<br>=<br>Inte           | 49.03<br>0.0000<br>                                     |  |  |  |  |  |  |
| Time at risk<br>Log likeliho<br>t  <br>t<br>slsprofit                                 | <pre>bod = -602.<br/>Coef.<br/></pre>                                                     | 63310<br>36512<br>Std. Err.<br>1.207052                           | z<br>6. 82                      | LR<br>Pr<br>P> z <br>0.000                      | chi2(3)<br>ob > chi2<br>                                        | =<br>=<br>Into<br>-5.8   | 49.03<br>0.0000<br>erval]<br>363718                     |  |  |  |  |  |  |
| Time at risk<br>Log likeliho<br>t  <br>t<br>slsprofit  <br>tabor                      | <pre>ind = -602. ind = -602. Coef8. 229497 2330196</pre>                                  | 63310<br>36512<br>Std. Err.<br>1. 207052<br>. 076712              | z<br>-6. 82<br>-3. 04           | LR<br>Pr<br>P> z <br>0. 000<br>0. 002           | chi2(3)<br>ob > chi2<br>[95% Conf.<br>-10.59528<br>3833724      | =<br>Into<br>-5.8        | 49.03<br>0.0000<br>erval]<br>363718<br>326669           |  |  |  |  |  |  |
| Time at risk<br>Log likeliho<br>t  <br>t<br>slsprofit  <br>t<br>t<br>t<br>t           | <pre>cod = -602.<br/>coef.<br/>-8. 229497<br/> 2330196<br/> 1396185</pre>                 | 63310<br>36512<br>Std. Err.<br>1.207052<br>.076712<br>.0821836    | z<br>-6. 82<br>-3. 04<br>-1. 70 | LR<br>Pr<br>P> z <br>0. 000<br>0. 002<br>0. 089 | <pre>chi2(3) ob &gt; chi2 [95% Conf10.5952838337243006953</pre> | =<br>Into<br>-5.8<br>08  | 49.03<br>0.0000<br>erval]<br>363718<br>326669<br>214583 |  |  |  |  |  |  |
| Time at risk<br>Log likeliho<br>t  <br>t<br>slsprofit  <br>t<br>t<br>slsprofit  <br>t | <pre>ind = -602.<br/>pod = -602.<br/>Coef.<br/>-8. 229497<br/> 2330196<br/> 1396185</pre> | 63310<br>36512<br>Std. Err.<br>1. 207052<br>. 076712<br>. 0821836 | z<br>-6. 82<br>-3. 04<br>-1. 70 | LR<br>Pr<br>P> z <br>0. 000<br>0. 002<br>0. 089 | <pre>chi2(3) ob &gt; chi2 [95% Conf10.5952838337243006953</pre> | =<br>Into<br>-5. 8<br>08 | 49.03<br>0.0000<br>erval]<br>363718<br>326669<br>214583 |  |  |  |  |  |  |

### (2)分布を仮定した推定

ベースライン・ハザードの分布の形を仮定してハザード関数を推定する場合、以下のコマンドを 用います。

### streg 説明変数,dist(分布名)

dist(分布名)の代表的な例として、以下のようなものがあります。

dist(weibull) : ベースライン・ハザードにワイブル分布を仮定 dist(exponential): パー 指数分布を仮定

(3)Kaplan-Meier 分析

生存関数(あるいはハザード関数)をノンパラメトリックに推定する方法として、Kaplan-Meier分析があります。詳しい説明は他の教科書に委ねますが、各期におけるイベントの発生確率を掛け合わせたものを生存関数(Kaplan-Meier 推定量)として、時間の変化とともに生存確率がどのように変化するかを分析する手法です。生存確率と時間の関係(Kaplan-Meier survivor curve)をグラフにする場合、以下のコマンドを用います。

sts graph sts graph, na

二行目は、累積のグラフを書く場合に用います。

先ほどの企業倒産のデータを使って Kaplan-Meier survivor curve を書く(sts graph)と以下のように出力されます。



\_all, 29 \_merge, 24

# Α

add, 29 append, 21 Append, 13 areg, 47

# В

<u>balance パネル</u>, 54 **browse**, 6

# С

col, 28, 32 collapse, 34 Copy Table, 41 Cox の比例ハザードモデル, 64 ctset, 63

# D

d., 57 Data Browser, 6 Data Editor, 5 describe, 7 destring, 17 Do ファイル, 11 dprobit, 50 drop, 29 duplicatees, 61

# Ε

**egen**, 9

# 索

引

EXCEL, 41

# F

```
f., 57
for, 19
for num, 19
foreach, 19
format, 30, 32
```

# G

generate, 8

# Ι

**iis**, 58 insheet, 4, 5

# Κ

Kaplan-Meier 分析, 66

# L

1.,57 list,7 LONG 形式,53

# Μ

merge, 23

# Ν

nofreq, 28 nototal, 32

# 0

oprobit,50

outreg, 51 outsheet, 42 overwrite, 13 Overwrite, 13

# Ρ

preserve, 37 probit, 49 pwd, 5

# R

recode, 39 reg, 44 rename, 4 replace, 5, 10 reshape, 55 restore, 37 Results ウインドウ, 12 row, 28, 32

# S

save, 5 set memory, 15 stat, 31 Stata 形式, 4 stcox, 64, 65 streg, 65 stset, 63 sum, 8

# Т

table, 32
tabstat, 30, 33
tis, 58
tsset, 56

# U

<u>unbalance パネル</u>, 54 use, 6 W

WIDE **形式**, 53

# Х

xi:reg, 46 xtdes, 56 xtreg, 59

# あ

エクセルファイル,5

# か

**回帰分析**,43 **階級別カテゴリー変数**,39 カテゴリー,27 カンマ区切り,4 **繰り返し**,19

# さ

最小値, 30 最大値, 30 **サバイバル分析**, 63 システム変数, 44 質的(離散)データ, 27 **質的変数**, 45 **条件式**, 10 相対度数, 27, 28

# た

**縦方向の結合**,21 タブ区切り,4 ダミー変数,45 度数,27,30 度数分布表,39

# は

**ハウスマン検定**, 59

パネルデータ,53 標準偏差,30 プロビット,48 平均,30 変量効果モデル,59 保存,5

# ま

メモリー, 15 文字列, 15, 17

# や

**横方向**, 22

# 6

**ラベル**, 29 **離散選択**, 48 累積相対度数, 27 ログ(作業記録), 12